2019年1月1日以降の実績

1号機

- ・1 号機使用済燃料プール(以下、「SFP」という。)循環冷却系については、当該設備の一次系ポンプの作業に伴い、2月7日午後4時24分から2月8日午後4時48分の期間、当該設備の運転を停止。冷却停止時のSFP水温度は21.6℃。起動後のSFP水温度は21.5℃。運転状態について異常のないことを確認。
- 2月6日午前5時現在のSFP 水温度は、22.3℃であり、放熱を考慮し、停止期間終了時点で約22.2℃と評価。
- ・1 号機使用済燃料プール(以下、「SFP」という。)循環冷却系については、当該設備の一次系ポンプの作業に伴い、2 月 18 日午後 4 時 48 分から当該設備の運転を停止。予定作業が終了したことから、3 月 6 日午後 5 時 42 分から当該設備の運転を再開。

冷却停止時の SFP 水温度は、16.9℃。 起動後の SFP 水温度は、23.3℃。

運転状態については、異常のないことを確認。

- 2月17日午前5時現在のSFP水温度は、16.2℃であり、放熱を考慮し、停止期間終了時点で約21.5℃と評価。
- ・1号機使用済燃料プール(以下、「SFP」という。)循環冷却系については、電源切替盤の新設作業に伴い、3月24日午後5時18分から当該設備の運転を停止。予定作業が終了したことから、3月28日午後4時38分から当該設備の運転を再開。

冷却停止時の SFP 水温度は 19.1° C。起動後の SFP 水温度は、 20.8° C。

運転状態については、異常のないことを確認。

3月22日午前5時現在のSFP 水温度は、20.3℃であり、放熱を考慮し、停止期間終了時点で約21.4℃と評価。

2号機

・1月8日1、2号機原子炉への注水源を3号機復水貯蔵タンク(以下、CST)から2号機 CST へ変 更する操作をしていた。同日午前11時49分頃、2台ある2号機 CST 原子炉注水ポンプの切り替 え操作(B系→A系)をしていたところ、ポンプの吐出圧力が上昇し、2台のポンプが自動停止。た だちに(午前11時50分頃)2号機 CST 原子炉注水ポンプ(A系)を起動し、必要注水量1.1m3/h に対して、1.7m3/h以上確保されていることを確認。プラントパラメータ(注水流量および原子炉圧 力容器底部温度等)およびモニタリングポストの指示に異常はないことを確認。ポンプが停止した 原因等、現場状況を確認する。

また、本トラブルにあたっては、午前11時49分、実施計画第1編第18条(原子炉注水系)表18-1で定める運転上の制限「原子炉の冷却に必要な注水量が確保されていること」を満足できないと判断するとともに、CST原子炉注水ポンプ(A)を起動したことにより、必要な注水量が確保されていることを確認し、午前11時54分、運転上の制限から復帰したことを判断した。

・2 号機原子炉建屋滞留水移送装置設置工事において電源および水位計測用ケーブル架台を施設

する。当該架台の施設時に、2 号機原子炉注水設備の炉心スプレイ系配管と干渉するため、1 月 29 日午前 10 時 57 分から午後 2 時 3 分、原子炉注水を給水系による単独注水に変更。

<2号機原子炉注水量変更>

給水系原子炉注水量: 1.4m³/h→3.0m³/h 炉心スプレイ系原子炉注水量:1.4m³/h→ 0m³/h

<2号機原子炉注水量変更(戻し)>

給水系原子炉注水量: 3.0m³/h→1.4m³/h 炉心スプレイ系原子炉注水量: 0m³/h→1.5m³/h

なお、給水系による単独注水期間中、原子炉の冷却状態に異常はなし。

- ・2 号機使用済燃料プール(以下、「SFP」という。)循環冷却系については、2 号機原子炉建屋滞留 水移送配管敷設作業と近接作業となることに伴い、2 月 20 日午前 5 時 51 分から当該設備の運転を停止。予定作業が終了したことから、3 月 7 日午後 2 時 59 分から当該設備の運転を再開。 冷却停止時の SFP 水温度は、18.1℃。起動後の SFP 水温度は、34.2℃。 運転状態については、異常のないことを確認。
- 2月19日午前5時現在のSFP 水温度は、17.5℃であり、放熱を考慮し、停止期間終了時点で約39.0℃と評価。
- ・2、3 号機原子炉格納容器(以下、「PCV」という。)ガス管理設備については、当該設備の放熱器の保全計画に基づく交換、および3 号機排気ファンBの電動機の点検作業に伴い、PCVガス管理設備を停止する。

設備停止中は特定原子力施設に係る実施計画「III 特定原子炉施設の保安」(以下、「実施計画」という)第1編第24条の表24-1に定める運転上の制限「PCVガス管理設備の放射線検出器が1チャンネル動作可能であること」を満足できなくなることから、実施計画第1編第32条第1項(保全作業を実施する場合)を適用し、計画的に運転上の制限外に移行して作業を実施する。

当該設備の停止予定日は以下のとおりで、作業日毎に当該設備を停止・復旧する。

<停止予定日>

- 2号機 2019年3月5日、7日、12日
- ・2号機原子炉格納容器ガス管理設備については、当該設備の放熱器の保全計画に基づく交換のため、3月5日午前9時52分から特定原子力施設に係る実施計画「Ⅲ 特定原子炉施設の保安」(以下、「実施計画」という。)第1編第32条第1項(保全作業を実施する場合)を適用し作業を開始。同日午後1時24分に作業が終了。その後、当該設備の動作確認において異常がないこと、および短半減期核種モニタの指示値に有意な変動がないことから、同日午後3時3分に実施計画第1編第32条第1項(保全作業を実施する場合)の適用を解除。なお、当該設備の停止期間における関連監視パラメータについては、異常なし。
- ・2 号機原子炉格納容器ガス管理設備については、当該設備の放熱器の保全計画に基づく交換のため、3月7日午前9時51分から特定原子力施設に係る実施計画「Ⅲ 特定原子炉施設の保安」(以下、「実施計画」という。)第1編第32条第1項(保全作業を実施する場合)を適用し作業を開始。作業が終了したことから同日午後3時36分に当該設備を起動。その後、当該設備の動作確認において異常がないこと、および短半減期核種モニタの指示値に有意な変動がないことから、同日午後5時7分に実施計画第1編第32条第1項(保全作業を実施する場合)の適用を解除。なお、当該設備の停止期間における関連監視パラメータについては、異常なし。
- ・2 号機原子炉格納容器ガス管理設備については、当該設備の放熱器の保全計画に基づく交換の

ため、3月12日午前9時50分から特定原子力施設に係る実施計画「III 特定原子炉施設の保安」 (以下、「実施計画」という。)第1編第32条第1項(保全作業を実施する場合)を適用し作業を開始。 交換作業が終了したことから同日午後0時28分に当該設備を起動。その後、当該設備の動作確認において異常がないこと、および短半減期核種モニタの指示値に有意な変動がないことから、同日午後2時に実施計画第1編第32条第1項(保全作業を実施する場合)の適用を解除。なお、当該設備の停止期間における関連監視パラメータについては、異常なし。

●2 号機燃料デブリ冷却性確認(STEP1)

・1~3 号機原子炉注水設備において、燃料デブリの冷却状況の実態を把握のため 2 号機燃料デブリ冷却性確認試験(STEP1)として原子炉注水量を低減・増加する試験に関連し、3 月 25 日から 4 月 16 日の期間、下記の予定で原子炉注水量の変更を行う。

なお、1~3号機原子炉注水設備全体のバランス調整のため、1号機および3号機の原子炉注水量の変更も行う。

(原子炉注水量変更予定)

(3月25日)

1 号機 給水系原子炉注水量 :1.5m³/h→2.0m³/h

1号機 炉心スプレイ系原子炉注水量 :1.5m³/h 3号機 給水系原子炉注水量 :1.5m³/h

3号機 炉心スプレイ系原子炉注水量 :1.5m³/h→2.0m³/h

(3月26日)

1 号機 給水系原子炉注水量 :2.0m³/h→2.5m³/h

1号機 炉心スプレイ系原子炉注水量 :1.5m³/h 3号機 給水系原子炉注水量 :1.5m³/h

3 号機 炉心スプレイ系原子炉注水量 :2.0m³/h→2.5m³/h

(3月27日)

1号機 給水系原子炉注水量 :2.5m³/h

1 号機 炉心スプレイ系原子炉注水量 :1.5m³/h→2.0m³/h 3 号機 給水系原子炉注水量 :1.5m³/h→2.0m³/h

3号機 炉心スプレイ系原子炉注水量 :2.5m³/h

(3月29日)

2 号機 給水系原子炉注水量 :1.5m³/h→ 0m³/h

2号機 炉心スプレイ系原子炉注水量 :1.5m³/h→3.0m³/h

(4月2日)原子炉注水量低減試験開始

2 号機 給水系原子炉注水量 : 0m³/h

2号機 炉心スプレイ系原子炉注水量 :3.0m³/h→1.5m³/h

(4月9日)原子炉注水量增加試験開始

2 号機 給水系原子炉注水量 : 0m³/h

2号機 炉心スプレイ系原子炉注水量 :1.5m³/h→3.0m³/h

(4月12日)

1号機 給水系原子炉注水量 :2.5m³/h

1号機 炉心スプレイ系原子炉注水量 :2.0m³/h→1.5m³/h

3 号機 給水系原子炉注水量 :2.0m³/h→1.5m³/h

3号機 炉心スプレイ系原子炉注水量 :2.5m³/h

(4月15日)

1 号機 給水系原子炉注水量 :2.5m³/h→2.0m³/h

1号機 炉心スプレイ系原子炉注水量 :1.5m³/h 3号機 給水系原子炉注水量 :1.5m³/h

3 号機 炉心スプレイ系原子炉注水量 :2.5m³/h→2.0m³/h

(4月16日)

1 号機 給水系原子炉注水量 :2.0m³/h→1.5m³/h

1号機 炉心スプレイ系原子炉注水量 :1.5m³/h

2 号機 給水系原子炉注水量 : 0m³/h→1.5m³/h 2 号機 炉心スプレイ系原子炉注水量 :3.0m³/h→1.5m³/h

3 号機 給水系原子炉注水量 :1.5m³/h

3 号機 炉心スプレイ系原子炉注水量 :2.0m³/h→1.5m³/h

なお、4月9日に実施する原子炉注水量増加に際しては、特定原子力施設に係る実施計画に定める運転上の制限「任意の24時間あたりの注水量増加幅1.0m3/h以下」に対し、特定原子力施設に係る実施計画「Ⅲ 特定原子力施設の保安」第1編第32条(保全作業を実施する場合)第1項を適用し、必要な安全措置を定めた上で、計画的に運転上の制限外に移行する操作を実施する。

(背景と目的)

現在、1~3 号機の原子炉内には安定的に注水を継続しているが、燃料デブリの崩壊熱は時間とともに大幅に減少している。

一方で、原子炉内への注水が停止した場合の温度変化の評価にあたっては、実際には生じている気中への自然放熱による温度低下等は考慮せず、燃料デブリの崩壊熱のみを考慮して計算している状況。

このような状況を踏まえ、燃料デブリの冷却状況の実態を把握し、気中への放熱も考慮したより実態に近い温度変化の評価(熱バランス評価)の正確さを確認するため、原子炉注水の低減・増加を一時的に行う試験を行うもの。

本試験を通じ、現在運用している評価よりも、より実態に即して大幅に落ち着いている状況が確認でき、熱バランス評価を適用できれば、緊急時対応手順の適正化や運転・保守管理上の改善につなげることが可能になる。

・1号機、および3号機原子炉注水設備については、2号機燃料デブリ冷却性確認試験(STEP1) に関連し、3月25日午前11時41分、原子炉注水量を以下のとおり変更。

1 号機 給水系原子炉注水量 :1.5m³/h→2.0m³/h 3 号機 炉心スプレイ系原子炉注水量 :1.5m³/h→2.0m³/h

・1 号機、および3 号機原子炉注水設備については、2 号機燃料デブリの冷却状況を確認するため、原子炉注水量を以下のとおり変更。

(3月26日午後0時48分)

1号機 給水系原子炉注水量 :2.0m³/h→2.5m³/h 3号機 炉心スプレイ系原子炉注水量 :2.0m³/h→2.5m³/h

(3月27日午後5時34分)

- 1号機 炉心スプレイ系原子炉注水量:1.3m³/h→1.7m³/h
- 3 号機 給水系原子炉注水量 :1.5m³/h→2.0m³/h
- (3月29日午前11時11分)
- 2 号機 給水系原子炉注水量 :1.3m³/h→0.0m³/h
- 2 号機 炉心スプレイ系原子炉注水量:1.5m³/h→3.0m³/h
- ・2 号機燃料デブリの冷却状況を確認するため、原子炉注水量の低減操作を実施。
 - 4月2日午前10時51分
 - 2号機 炉心スプレイ系原子炉注水量:3.1m³/h→1.5m³/h
- 約7日間状況を確認。

その後、原子炉注水量を以下のとおり変更(流量の戻し操作)。

- 4月9日午前10時43分
- 2号機 炉心スプレイ系原子炉注水量:1.4m³/h→3.0m³/h
- 4月12日午後0時18分
- 1号機 炉心スプレイ系原子炉注水量:1.7m³/h→1.5m³/h
- 3 号機 給水系原子炉注水量 :2.0m³/h→1.5m³/h
- 4月15日午前10時57分
- 1 号機 給水系原子炉注水量 :2.4m³/h→2.0m³/h
- 3 号機 炉心スプレイ系原子炉注水量:2.5m³/h→2.0m³/h
- 4月16日午後3時2分
- 1 号機 給水系原子炉注水量 :2.0m³/h→1.5m³/h
- 2号機 給水系原子炉注水量 :0.0m³/h→1.5m³/h
- 2号機 炉心スプレイ系原子炉注水量:3.0m³/h→1.5m³/h
- 3 号機 炉心スプレイ系原子炉注水量:2.0m³/h→1.5m³/h

なお、2号機燃料デブリ冷却状況の確認期間中、関連監視パラメータに異常はなし。

●2号機燃料デブリ冷却性確認(STEP2)

・1~3 号機原子炉注水設備において、燃料デブリの冷却状況の実態を把握するため、2 号機燃料デブリ冷却性確認(STEP2)として原子炉注水量を低減・増加する操作に関連し、5 月 7 日から5月29日の期間、以下の予定で原子炉注水量の変更を行う。

なお、1~3 号機原子炉注水設備全体のバランス調整のため、1 号機および3 号機の原子炉注水量の変更も行う。

(原子炉注水量変更予定)

(5月7日)

- 1 号機 給水系原子炉注水量 :1.5m³/h→2.0m³/h
- 3 号機 炉心スプレイ系原子炉注水量:1.5m³/h→2.0m³/h
- (5月8日)
- 1 号機 炉心スプレイ系原子炉注水量:1.5m³/h→2.0m³/h
- 3 号機 炉心スプレイ系原子炉注水量:2.0m³/h→2.5m³/h
- (5月10日)
- 1 号機 給水系原子炉注水量 :2.0m³/h→2.5m³/h
- 2 号機 給水系原子炉注水量 :1.5m³/h→0.0m³/h

- 2 号機 炉心スプレイ系原子炉注水量:1.5m³/h→3.0m³/h
- 3 号機 給水系原子炉注水量 :1.5m³/h→2.0m³/h
- (5月13日)原子炉注水停止(STEP2)開始
- 2 号機 炉心スプレイ系原子炉注水量:3.0m³/h→0.0m³/h
- (5月13日)原子炉注水再開
- 2 号機 炉心スプレイ系原子炉注水量:0.0m³/h→1.5m³/h
- (5月15日)
- 2 号機 炉心スプレイ系原子炉注水量:1.5m³/h→2.0m³/h
- (5月16日)
- 2 号機 炉心スプレイ系原子炉注水量:2.0m³/h→2.5m³/h
- (5月17日)
- 2 号機 炉心スプレイ系原子炉注水量:2.5m³/h→3.0m³/h
- (5月24日)(STEP2)終了
- 2 号機 給水系原子炉注水量 :0.0m³/h→1.5m³/h
- 2 号機 炉心スプレイ系原子炉注水量:3.0m³/h→1.5m³/h
- (5月27日)
- 1号機 炉心スプレイ系原子炉注水量:2.0m³/h→1.5m³/h
- 3 号機 給水系原子炉注水量 :2.0m³/h→1.5m³/h
- (5月28日)
- 1号機 給水系原子炉注水量 :2.5m³/h→2.0m³/h
- 3号機 炉心スプレイ系原子炉注水量:2.5m³/h→2.0m³/h
- (5月29日)

(背景と目的)

- 1 号機 給水系原子炉注水量 :2.0m³/h→1.5m³/h
- 3 号機 炉心スプレイ系原子炉注水量:2.0m³/h→1.5m³/h

なお、以下の操作は、特定原子力施設に係る実施計画「Ⅲ 特定原子力施設の保安」第1編第32条(保全作業を実施する場合)第1項を適用し、必要な安全措置を定めた上で、計画的に運転上の制限外に移行し操作を実施する。

- •5 月 13 日に実施する原子炉注水停止操作については、特定原子力施設に係る実施計画に 定める運転上の制限「原子炉の冷却に必要な注水量が確保されていること」
- ・5 月 13 日に実施する原子炉注水再開操作については、特定原子力施設に係る実施計画に 定める運転上の制限「任意の24時間あたりの注水量増加幅 1.0m³/h以下」

現在、1~3 号機の原子炉内には安定的に注水を継続しているが、燃料デブリの崩壊熱は時間とともに大幅に減少している。

一方で、原子炉内への注水が停止した場合の温度変化の評価にあたっては、実際には生じている気中への自然放熱による温度低下等は考慮せず、燃料デブリの崩壊熱のみを考慮して計算している状況。

このような状況を踏まえ、燃料デブリの冷却状況の実態を把握し、気中への放熱も考慮したより実態に近い温度変化の評価(熱バランス評価)の正確さを確認するため、原子炉注水の低減・増加を一時的に行う操作を行うもの。

本操作を通じ、現在運用している評価よりも、より実態に即して大幅に落ち着いている状況が確

認でき、熱バランス評価を適用できれば、緊急時対応手順の適正化や運転・保守管理上の改善につなげることが可能になる。

- •1~3 号機原子炉注水設備において、燃料デブリの冷却状況の実態を把握するため、2 号機燃料デブリ冷却性確認として原子炉注水量を低減・増加する操作に関連し、以下のとおり原子炉注水量を変更。
- (5月7日午後2時51分)

1 号機 給水系原子炉注水量 :1.5m³/h→2.0m³/h

3 号機 炉心スプレイ系原子炉注水量:1.5m³/h→2.0m³/h

(5月8日午後5時22分)

1号機 炉心スプレイ系原子炉注水量:1.4m³/h→1.7m³/h

3 号機 炉心スプレイ系原子炉注水量:2.0m³/h→2.5m³/h

(5月10日午後2時22分)

1 号機 給水系原子炉注水量 :2.0m³/h→2.5m³/h

2 号機 給水系原子炉注水量 :1.4m³/h→ 0m³/h

2号機 炉心スプレイ系原子炉注水量:1.5m³/h→3.0m³/h

3 号機 給水系原子炉注水量 :1.4m³/h→2.0m³/h

この後、5月13日には、燃料デブリの冷却性確認として、2号機への原子炉注水を7時間停止する予定。

3号機

- ・3 号機原子炉格納容器ガス管理設備については、当該設備の制御盤二重化工事に伴い、1 月 17 日午前 9 時 31 分から特定原子力施設に係る実施計画「III 特定原子炉施設の保安」(以下、「実施計画」という。)第1編第 32 条第1項(保全作業を実施する場合)を適用し作業を開始。同日午後 0 時 53 分に作業が終了。その後、当該設備の動作確認において異常がないこと、および短半減期核種モニタの指示値に有意な変動がないことから、同日午後 2 時 5 分に実施計画第1編第 32 条第1項(保全作業を実施する場合)の適用を解除。なお、当該設備の停止期間における関連監視パラメータについては、異常なし。
- ・3 号機原子炉格納容器ガス管理設備については、当該設備の制御盤二重化工事に伴い、1 月31 日午前9時40分から特定原子力施設に係る実施計画「III 特定原子炉施設の保安」(以下、「実施計画」という。)第1編第32条第1項(保全作業を実施する場合)を適用し作業を開始。同日午後2時54分に作業が終了。その後、当該設備の動作確認において異常がないこと、および短半減期核種モニタの指示値に有意な変動がないことから、同日午後2時55分に実施計画第1編第32条第1項(保全作業を実施する場合)の適用を解除。なお、当該設備の停止期間における関連監視パラメータについては、異常なし。
- ・3 号機原子炉格納容器ガス管理設備については、当該設備の制御盤二重化工事に伴い、2月1日午前9時47分から特定原子力施設に係る実施計画「III 特定原子炉施設の保安」(以下、「実施計画」という。)第1編第32条第1項(保全作業を実施する場合)を適用し作業を開始。同日午後3時58分に作業が終了。その後、当該設備の動作確認において異常がないこと、および短半減期核種モニタの指示値に有意な変動がないことから、同日午後4時に実施計画第1編第32条第1項(保全作業を実施する場合)の適用を解除。なお、当該設備の停止期間における関連監視

パラメータについては、異常なし。

・3 号機原子炉注水設備の炉心スプレイ系配管については、信頼性向上対策のためポリエチレン管への取替工事を行う。このため、2月6日午前10時50分から原子炉注水を給水系による単独注水に変更。当該工事の終了に伴い、2月8日午前10時41分に原子炉注水を給水系および炉心スプレイ系による注水に変更(戻し)。

<3号機原子炉注水量変更>

給水系原子炉注水量 $:1.5 \text{m}^3/\text{h} \rightarrow 3.0 \text{m}^3/\text{h} \rightarrow 1.5 \text{m}^3/\text{h}$ (戻し) 炉心スプレイ系原子炉注水量: $1.5 \text{m}^3/\text{h} \rightarrow 0 \text{m}^3/\text{h} \rightarrow 1.5 \text{m}^3/\text{h}$ (戻し)

なお、給水系による単独注水期間中、原子炉の冷却状態に異常はなし。

・2、3 号機原子炉格納容器(以下、「PCV」という。)ガス管理設備については、当該設備の放熱器の保全計画に基づく交換、および3 号機排気ファンBの電動機の点検作業に伴い、PCVガス管理設備を停止する。

設備停止中は特定原子力施設に係る実施計画「Ⅲ 特定原子炉施設の保安」(以下、「実施計画」 という)第1編第24条の表24-1に定める運転上の制限「PCVガス管理設備の放射線検出器が 1チャンネル動作可能であること」を満足できなくなることから、実施計画第1編第32条第1項(保 全作業を実施する場合)を適用し、計画的に運転上の制限外に移行して作業を実施する。

当該設備の停止予定日は以下のとおりで、作業日毎に当該設備を停止・復旧する。 <停止予定日>

- 3号機 2019年3月14日、18日、22日
- ・3 号機原子炉格納容器ガス管理設備については、当該設備の放熱器の保全計画に基づく交換のため、3 月 14 日午前 9 時 53 分から特定原子力施設に係る実施計画「III 特定原子力施設の保安」(以下、「実施計画」という。)第1編第 32 条第1項(保全作業を実施する場合)を適用し作業を開始。作業が終了したことから同日午後 2 時 35 分に当該設備を起動。その後、当該設備の動作確認において異常がないこと、および短半減期核種モニタの指示値に有意な変動がないことから、同日午後 4 時 10 分に実施計画第1編第 32 条第1項(保全作業を実施する場合)の適用を解除、なお、当該設備の停止期間における関連監視パラメータについては、異常なし。
- ・3 号機原子炉格納容器ガス管理設備については、当該設備の放熱器の保全計画に基づく交換のため、3 月 18 日午前 10 時 5 分から特定原子力施設に係る実施計画「Ⅲ 特定原子力施設の保安」(以下、「実施計画」という。)第1編第 32 条第1項(保全作業を実施する場合)を適用し作業を開始。作業が終了したことから同日午後 3 時 50 分に当該設備を起動。その後、当該設備の動作確認において異常がないこと、および短半減期核種モニタの指示値に有意な変動がないことから、同日午後 5 時 8 分に実施計画第1編第 32 条第1項(保全作業を実施する場合)の適用を解除。なお、当該設備の停止期間における関連監視パラメータについては、異常なし。
- ・3 号機原子炉格納容器ガス管理設備については、当該設備の放熱器の保全計画に基づく交換のため、3 月 22 日午前 10 時 2 分から特定原子力施設に係る実施計画「Ⅲ 特定原子力施設の保安」(以下、「実施計画」という。)第1編第 32 条第1項(保全作業を実施する場合)を適用し作業を開始。交換作業が終了したことから同日午後 4 時 25 分に当該設備を起動。その後、当該設備の動作確認において異常がないこと、および短半減期核種モニタの指示値に有意な変動がないことから、同日午後 5 時 10 分に実施計画第1編第 32 条第1項(保全作業を実施する場合)の適用を解除。なお、当該設備の停止期間における関連監視パラメータについては、異常なし。

4号機

・福島第一原子力発電所 4 号機タービン建屋東側に設置してある 4 号機復水貯蔵タンク(以下、「CST」という。)の水位が低下傾向にあることを 2019 年1月 18 日に確認した。CST には、震災以前のプラント内で使用した水を保有しているが、過去に遡って長期間の水位トレンドを確認したところ、2016 年 11 月頃から徐々に低下傾向を示しており、2019 年1月 18 日時点で低下量は約300m³であることを確認した。CST の水位低下を確認するに至った経緯については以下のとおり。

2019 年1月 10 日にトレンチ等の溜まり水点検を行ったところ、4 号機タービン建屋海側にある配管ダクト内に約3m³の溜まり水があることを確認。当該配管ダクト内に溜まり水があった要因として、周辺設備等の調査を行っていたところ、2019 年1月 18 日に CST 水位が低下傾向にあることを確認。当該配管ダクトについては、震災後に溜まり水があったことから、毎年点検を行い、2017 年11 月に水抜きを実施。

CST は2重構造で、タンクからの配管は4号機建屋のみに繋がっており、2019年1月22日に現場状況を確認した結果、CST や配管からの漏えいは確認されなかったことから、CST の水は配管内を通じて建屋内に流入したものと考えている。また、CST の水位が低下傾向にあることが確認された2016年11月以降に採取した近傍サブドレンピットにおいて、トリチウム濃度に有意な変動は確認されていない。今後、当該配管ダクト内にある溜まり水の調査、および CST の水抜きについて検討している。

・5月5日午後10時38分頃、4号機タービン建屋2階にある建屋内RO(B)ユニットの接続部から水が漏えい(滴下)していることを当社社員が発見。漏えい範囲は約0.3m×0.3m×深さ1mm。拡大防止処置として下部に受けを設置。7秒に1滴程度で滴下が継続しているが堰内に留まっており外部への影響はなし。漏えいした水は、建屋内ROの処理水で、至近の分析結果は以下のとおり。

[試料採取日 2019年2月14日]

ストロンチウム 90:検出限界値未満(検出限界値 27Bq/L)

セシウム 134: 検出限界値未満(検出限界値 0.88Bq/L)

セシウム 137:4.1Bq/L

堰内に漏えいした水については、拭き取りを実施。漏えい発見時、建屋内RO(B)は運転停止中。 漏えいは継続しているため、今後、ユニット内系統水の処理および漏えい箇所の処置を行う。

5号機

・5 号機使用済燃料プール(以下、「SFP」という。)冷却浄化系については、補助海水系放射線モニタ点検に伴い、2月19日午前9時40分から当該設備の冷却に使用している補助海水系の運転を停止。予定作業が終了したことから、2月20日午後3時1分から当該設備の運転を再開。冷却停止時のSFP水温度は、17.3℃。起動後のSFP水温度は、21.2℃。

運転状態については、異常のないことを確認。

冷却停止中の SFP 水温度上昇は、約6.2℃と評価(温度上昇率:約0.191℃/h)。

2月18日午前5時現在のSFP水温度は、17.1℃。

•5 号機使用済燃料プール(以下、「SFP」という。)冷却浄化系については、スキマーサージタンクのレベルスイッチへ物的防護柵の取り付け作業に伴い、3月27日午前9時51分から当該設備の運転を停止。予定作業が終了したことから午前11時53分にSFP冷却浄化系の運転を再開。冷却停止時のSFP水温度は18.3℃。起動後のSFP水温度は、18.4℃。

運転状態については、異常のないことを確認。

冷却停止中の SFP 水温度上昇は、約1.0℃と評価(温度上昇率:約0.190℃/h)。

- 3月26日午後1時現在のSFP水温度は、18.6℃。
- ・5 号機使用済燃料プール(以下、「SFP」という。)については、使用済燃料プール冷却浄化系(以下、「FPC 系」という。)にて冷却しているが、FPC 系を冷却している原子炉建屋補機冷却系の弁点検を行うため、SFP 冷却を FPC 系から残留熱除去系(以下「RHR 系」という。)による冷却へ切り替えを行い、点検後は、SFP 冷却を RHR 系から FPC 系による冷却に戻す。

SFP 冷却切り替え実績は以下のとおり。

(実績)

4月15日午前11時46分にFPC 系を停止し、RHR 系非常時熱負荷モードに切り替え。 切り替え後のSFP 水温度は18.0℃(停止時17.9℃)。

運転状態については、異常のないことを確認。

- ・冷却停止中の SFP 水温度上昇は約1.4℃と評価(温度上昇率:約0.190℃/h)
- 4月25日午後2時17分にRHR 系非常時熱負荷モードを停止し、午後2時43分にFPC系による冷却に切り替え。

切り替え後の SFP 水温度は 15.4℃(停止時 15.8℃)。

運転状態については、異常のないことを確認。

- ・冷却停止中の SFP 水温度上昇は約 1.4℃と評価(温度上昇率:約 0.190℃/h)
- 4月12日午後1時現在のSFP水温度は、17.3℃。

6号機

・6 号機使用済燃料プール(以下、「SFP」という。) 冷却浄化系については、補助海水系放射線モニタ取替工事に伴い、1 月 29 日午前 10 時1分から当該設備の冷却に使用している補助海水系の運転を停止。予定作業が終了したことから、1 月 30 日午前 11 時 4 分から当該設備の運転を再開。冷却停止時の SFP 水温度は、16.3℃。起動後の SFP 水温度は、19.8℃。

運転状態については、異常のないことを確認。

冷却停止中の SFP 水温度上昇は、約6.5℃と評価(温度上昇率:約0.195℃/h)。

- 1月28日午前10時現在のSFP水温度は、15.3℃。
- ・6 号機使用済燃料プール(以下、「SFP」という。)冷却浄化系については、使用済燃料プール冷却 浄化系(以下、「FPC 系」という。)にて冷却しているが、FPC 系を冷却している補助海水系の機器点 検作業に伴い、SFP 冷却を FPC 系から残留熱除去系(以下「RHR 系」という。)による冷却へ切り替 えを行い、補助海水系の機器点検後は、SFP 冷却を RHR 系より FPC 系による冷却に戻す。 SFP 冷却停止実績は以下のとおり。

(宝績)

3月8日午前11時にFPC 系を停止し、午前11時59分にRHR 系非常時熱負荷モードに切り替え。 3月8日切り替え後のSFP 水温度は、16.8 \mathbb{C} (停止時16.2 \mathbb{C})。 運転状態については、異常なし。

(実績)

- 3月20日午前10時20分にRHR 系非常時熱負荷モードを停止し、午前10時50分にFPC系に切り替え。
- 3月20日切り替え後のSFP水温度は、16.9℃(停止時17.5℃)。

運転状態については、異常なし。

SFP 冷却停止予定は以下のとおり。

- 3月8日午前9時から午後4時(約7時間停止)
- ・FPC 系から RHR 系非常時熱負荷モードに切り替え
- ・冷却停止中の SFP 水温度上昇は約 1.4℃と評価(温度上昇率:約 0.194℃/h)
- 3月19日午前9時から午後4時(約7時間停止)
- ・RHR 系非常時熱負荷モードから FPC 系に切り替え
- ・冷却停止中の SFP 水温度上昇は約 1.4℃と評価(温度上昇率:約 0.194℃/h)
- 3月7日午後2時現在のSFP水温度は、16.4℃。

水処理装置および貯蔵設備の状況

【タンクパトロール結果】

・1月21日午後2時25分頃、Dタンクエリアの内堰の内側に水たまりがあることをタンクパトロールに従事している協力企業作業員が発見。現場の作業状況を確認したところ、雨水移送配管撤去作業時に当該堰内の集水桝に留まっていた水を当該堰内に散水していたことが判明。 水たまりの水の放射能分析結果は以下のとおり。

・セシウム 134 検出限界値未満(検出限界値:6.2 Bg/L)

・セシウム 137 34.8 Bq/L

•全ベータ 50.0 Bq/L

以上のことから水たまりの水については、雨水と判断。

【H4, H6エリアタンクにおける水漏れに関するサンプリング結果】

現時点での特記事項なし

【地下貯水槽に関する水のサンプリング結果】

現時点での特記事項なし

【セシウム除去設備】

現時点での特記事項なし

【多核種除去設備(ALPS)】

・1月22日午前9時47分頃、既設多核種除去設備(B)の堰内に水たまり(1滴/5秒程度で40cm×200cm×1mmの範囲)があり、クロスフローフィルター出口弁グランド部から水が漏えいしていることをタンクパトロール中の協力企業作業員が発見。漏えいした水は既設多核種除去設備の系統水であり、当該出口弁グランド部の増し締めを行い、漏えいが停止したことを午前10時17分に確認。

漏えいした水については拭き取りを実施。

・2月12日午後9時22頃、多核種除去設備建屋(C)(停止中)において、漏えい検知器が作動したことを示す警報「クロスフローフィルタ(C) スキッド2-2漏えい」が発生。漏えい箇所は、当該設備クロスフローフィルタ(C)の流量調整弁のフランジ部。漏えい範囲は、約0.2m×0.2m×深さ2cm(溜めマス内)および約2m×0.1m×深さ0.1cm(堰内)であり、循環ポンプを同日午後9時30分に停止し滴下が止まったことを確認。漏えいした水は、当該設備の系統水であり、堰内に留まっているため外部への影響はなし。また、漏えい水については回収・拭き取りを完了。

直近の当該系統水の分析結果は以下のとおり。

 [採取日 2018年12月11日]

 セシウム134 : 65.9 Bq/L

 セシウム137 : 786 Bq/L

 全ベータ :124,000 Bg/L

- ・2月21日午前10時32頃、既設多核種除去設備(C)のクロスフローフィルタスキッド2-1内の循環ポンプ2C周辺(堰内)に水溜りがあることを協力企業作業員が発見。漏えい箇所は、吐出弁前後のフランジ部からであり、養生シートの上に約1m×0.5mの範囲に滴下を確認。漏えいした水は、堰内の養生シート上に溜まっていることから外部への影響はないものと判断。全ベータ放射能の測定結果は検出限界値未満(検出限界値:1.5×10⁴Bq/L)であることを確認。当該箇所は発見前までクロスフローフィルタの清掃を行っていたことと、測定結果から清掃に使用した水が漏えいしたものと思われる。今後、当該箇所の点検・調査を行う。水溜りについては準備が整い次第、拭き取りをする。
- ・3月28日午前11時9分頃、既設多核種除去設備(A)において漏えい警報が発生。その後、午前11時22分に該当箇所付近で作業中の協力企業作業員が漏えい(約2m×3m×深さ2~3mm)を発見。漏えいした水は堰内にとどまっているが、1秒に1滴程度の滴下中で直ちに袋で養生している。その後、午後2時、漏えいが確認された当該設備の排水ラインに閉止蓋を取り付け、漏えい停止を確認。また、午後2時29分に漏えい水の回収・拭き取りを完了。

なお、当該漏えい水の分析結果は以下の通り。

[採取日 2019年3月28日]

全ベータ :1.6×10² Bq/L

セシウム 134 : 検出限界値未満(検出限界値 6.4 Bq/L) セシウム 137 : 検出限界値未満(検出限界値 7.9 Bg/L)

【増設多核種除去設備】

現時点での特記事項なし

【高性能多核種除去設備】

現時点での特記事項なし

【淡水化装置】

現時点での特記事項なし

【RO濃縮水処理設備】

・1月31日午後4時30分頃、RO処理装置が設置してあるコンテナ内のRO膜モジュール下部に水溜まりがあることを当社運転員が発見。漏えい範囲は、20cm×30cm×1mm。当該装置を同日午後4時32分に停止し、その後、漏えいは停止。外部への影響はなく、当該装置が設置してあるコンテナ内に留まっている。現場確認の結果、漏えい箇所は当該装置の出口配管つなぎ目であることを確認。同日午後5時53分に水溜りの拭き取りを完了。

【RO濃縮廃液タンク水処理設備】

現時点での特記事項なし

【その他】

・2月15日午前10時20分頃、H1タンクエリアにおいて配管フランジ漏えい拡大防止用保温材の継ぎ目から水が1秒に1滴、滴下していることを協力企業作業員が発見。漏えい箇所は、ビニール袋にて養生済み。滴下部には、氷状のものが約1.0m×0.6mの範囲で確認。滴下している付近に側溝が存在せず、漏えいは直下に留まっていること、また、排水路の放射線モニタにも有意な変動は見られていないことから、外部への影響はないものと判断。

その後、配管フランジ漏えい拡大防止用保温材を外し漏洩の有無を確認したところ、漏えいの継続がないことを確認。

漏えいした水の分析結果は以下の通り。

- ・セシウム 134 検出限界値未満(検出限界値:9.2×10² Bg/L)
- ・セシウム 137 1.6×10³ Bq/L
- •全ベータ 3.9×10⁵ Bq/L

漏えいした水の分析結果から、RO濃縮水移送配管の系統水が漏えいしたと判断。 今後、漏えい筒所および発生原因等を調査する。

・2月22日午前10時21分頃、サプレッションプール水受入水移送ポンプ(A)の試運転を行っていたところ、水が漏えいしていることを協力企業作業員が発見。当該ポンプはサプレッションプール水サージタンク建屋東側に設置されており、内堰と外堰がある。内堰はアクリル製の小屋の内側にあり、ポンプから漏えいした水は飛散し、アクリル製の小屋の壁にあたり、内堰とアクリル製の壁の隙間から、外堰内に漏えいした。漏えい箇所は、第二セシウム吸着装置で処理した水(ストロンチウム処理水)を廃液供給タンクへ移送する当該ポンプの出口フランジ。外部への影響は、排水弁が設置されている外堰外の地面の水分をスミヤ濾紙で汚染測定したところ、バックグラウンド相当であったことから、漏えいした水は外堰内に留まっていると判断。今後、堰内に漏えいした水については準備が整い次第回収する。

サブドレン他水処理施設

以下、排水実績のみ記載。

<排水実績>

- ・一時貯水タンクA 1月1日午前9時53分~午後0時26分。排水量378m³
- ・一時貯水タンクB 1月3日午前9時59分~午後0時50分。排水量425m3
- ・一時貯水タンク C 1月4日午前10時1分~午後0時30分。排水量369m3
- •一時貯水タンクD 1月6日午前9時59分~午後0時23分。排水量356m³
- ・一時貯水タンクE 1月7日午前10時12分~午後0時29分。排水量340m³
- ・一時貯水タンクF 1月9日午前10時1分~午後0時13分。排水量328m³
- ・一時貯水タンクG 1月10日午前9時56分~午後0時11分。排水量332m3
- ・一時貯水タンクH 1月12日午前10時~午前11時30分。排水量221m³
- ・一時貯水タンク J 1月13日午前10時16分~午後0時28分。排水量326m3
- ・一時貯水タンクK 1月15日午前10時7分~午後0時11分。排水量305m3

- •一時貯水タンクL 1月16日午前11時2分~午後1時7分。排水量308m³
- 一時貯水タンクA 1月18日午前10時7分~午後0時14分。排水量314m³
- •一時貯水タンクB 1月19日午前10時4分~午後0時14分。排水量320m3
- ・一時貯水タンクC 1月21日午前10時10分~午後0時21分。排水量323m3
- •一時貯水タンクD 1月22日午前10時2分~午後0時3分。排水量299m³
- ・一時貯水タンクE 1月24日午前10時10分~午後0時3分。排水量280m3
- ・一時貯水タンクF 1月25日午前10時15分~午後0時9分。排水量280m3
- •一時貯水タンクG 1月27日午前9時52分~午前11時58分。排水量311m3
- •一時貯水タンクH 1月28日午前10時2分~午後0時5分。排水量305m3
- ・一時貯水タンクJ 1月30日午前10時7分~午後0時2分。排水量285m3
- ・一時貯水タンクK 1月31日午前10時11分~午前11時56分。排水量257m3
- •一時貯水タンクL 2月2日午前10時1分~午前11時54分。排水量279m3
- •一時貯水タンクA 2月3日午前9時47分~午前11時56分。排水量319m³
- ・一時貯水タンクB 2月5日午前10時10分~午後0時10分。排水量294m3
- ・一時貯水タンク C 2月8日午前10時10分~午後0時13分。排水量303m3
- ・一時貯水タンクD 2月9日午前10時13分~午後0時19分。排水量310m3
- ・一時貯水タンクE 2月10日午前9時55分~午後0時10分。排水量333m3
- ・一時貯水タンクF 2月11日午前9時39分~午後0時2分。排水量354m³
- •一時貯水タンクG 2月12日午前10時~午後0時18分。排水量343m³
- ・一時貯水タンクH 2月14日午前10時3分~午後0時21分。排水量340m³
- ・一時貯水タンク J 2月15日午前10時9分~午後0時26分。排水量338m3
- ・一時貯水タンクK 2月17日午前10時3分~午後1時。排水量438m³
- ・一時貯水タンクL 2月21日午前10時43分~午後1時38分。排水量434m³
- ・一時貯水タンクA 2月22日午前10時19分~午後1時25分。排水量462m³
- ・一時貯水タンクB 2月23日午前10時24分~午後1時46分。排水量501m³
- ・一時貯水タンクC 2月26日午前10時12分~午後1時14分。排水量452m³ ・一時貯水タンクD 2月27日午前11時8分~午後1時17分。排水量319m³
- •一時貯水タンクE 3月1日午前10時28分~午後0時35分。排水量304m³
- •一時貯水タンクF 3月3日午前10時4分~午後0時56分。排水量425m³
- ・一時貯水タンクG 3月5日午前10時11分~午後1時6分。排水量434m³
- ・一時貯水タンクH 3月7日午前10時7分~午後0時57分。排水量423m³
- ・一時貯水タンク J 3月11日午前10時~午後0時55分。排水量433m3
- ・一時貯水タンクK 3月12日午前10時3分~午後0時57分。排水量432m3
- •一時貯水タンクL 3月13日午前10時2分~午後0時26分。排水量356m3
- ・一時貯水タンクA 3月15日午前11時16分~午後1時50分。排水量382m3
- •一時貯水タンクB 3月18日午前10時5分~午後2時57分。排水量727m3
- ・一時貯水タンク C 3月19日午前10時28分~午後2時16分。排水量561m³
- ・一時貯水タンクD 3月21日午前10時10分~午後4時21分。排水量924m³・一時貯水タンクE 3月25日午前9時55分~午後4時2分。排水量913m³
- •一時貯水タンクF 3月26日午前10時~午後3時28分。排水量814m³
- ・一時貯水タンクG 3月27日午前10時2分~午前11時1分。排水量144m3

- ・一時貯水タンクH 3月29日午前10時6分~午後4時52分。排水量1,010m³
- ・一時貯水タンクJ 4月1日午前10時4分~午後3時7分。排水量752m³
- ・一時貯水タンクK 4月2日午前9時58分~午後3時36分。排水量841m3
- •一時貯水タンクL 4月4日午前11時7分~午後3時15分。排水量617m³
- ・一時貯水タンクA 4月8日午前10時7分~午後1時56分。排水量567m3
- ・一時貯水タンクB 4月9日午前10時20分~午後4時8分。排水量865m³
- ・一時貯水タンクC 4月10日午前10時2分~午後1時40分。排水量542m³
- ・一時貯水タンクG 4月18日午前11時14分~午後2時38分。排水量506m3
- •一時貯水タンクE 4月19日午前10時2分~午後1時34分。排水量526m³
- ・一時貯水タンクF 4月20日午前11時1分~午後2時24分。排水量503m³
- •一時貯水タンクH 4月22日午前10時6分~午後3時27分。排水量798m³
- ・一時貯水タンクD 4月23日午前10時9分~午後1時51分。排水量526m3
- ・一時貯水タンクK 4月24日午前10時3分~午後2時44分。排水量682m3
- •一時貯水タンク J 4月25日午前11時30分~午後4時30分。排水量747m³
- ・一時貯水タンクL 4月26日午前10時16分~午後3時6分。排水量722m³
- •一時貯水タンクA 4月29日午前10時9分~午後2時38分。排水量667m³
- •一時貯水タンクB 4月30日午前10時2分~午後2時12分。排水量623m³
- ・一時貯水タンクC 5月2日午前10時2分~午後1時53分。排水量574m³
- ・一時貯水タンクD 5月7日午前10時11分~午後2時30分。排水量641m³
- ・一時貯水タンクE 5月8日午前9時53分~午後2時18分。排水量660m³
- •一時貯水タンクF 5月9日午前10時15分~午後2時44分。排水量668m³
- ・一時貯水タンクG 5月10日午前10時8分~午後2時58分。排水量720m³

<特記事項>

現時点での特記事項なし

地下水バイパス

以下、排水実績のみ記載。

<排水実績>

・一時貯留タンクグループ 3 1月11日午前10時5分~午後5時31分。排水量2,053m3

・一時時留タンクグループ 2 1月16日午前9時49分~午後5時20分。排水量2.057m³

・一時貯留タンクグループ 1 1月23日午前10時44分~午後5時51分。排水量1,935m3

・一時貯留タンクグループ3 1月26日午前10時20分~午後5時7分。排水量1.867m³

・一時時留タンクグループ 2 2月10日午前10時14分~午後5時31分。排水量2.038m³

•一時貯留タンクグループ 3 2月11日午前9時48分~午後5時42分。排水量2,198m³

・一時貯留タンクグループ 1 2月21日午前9時59分~午後4時9分。排水量1,662m³

・一時貯留タンクグループ 2 2月27日午前10時2分~午後5時22分。排水量2,027m3

・一時貯留タンクグループ3 3月8日午前10時2分~午後3時45分。排水量1,557m3

・一時貯留タンクグループ 1 3月15日午前10時8分~午後2時50分。排水量1,262m3

・一時貯留タンクグループ 2 3月23日午前9時36分~午後3時53分。排水量1,755m3

・一時貯留タンクグループ 3 3月28日午前10時4分~午後3時30分。排水量1,480m³

・一時貯留タンクグループ 1 4月4日午前9時57分~午後4時16分。排水量1,712m3

・一時貯留タンクグループ 2 4月11日午前10時6分~午後4時12分。排水量1,692m3

・一時貯留タンクグループ 3 4月18日午前9時51分~午後3時47分。排水量1,641m3

・一時貯留タンクグループ 1 4月25日午前10時23分~午後4時22分。排水量1,626m3

•一時貯留タンクグループ2 4月28日午前9時53分~午後2時4分。排水量1,155m3

・一時貯留タンクグループ3 5月11日午前10時2分~

<特記事項>

・1月15日午前10時12分頃、H3東エリアの地下水バイパス一時貯留タンクグループ1-1周辺に水たまり(底辺約10m×高さ約20m×深さ約10cmの三角形状)があることを協力企業作業員が発見。地下水バイパスでくみ上げた地下水以外の可能性がないかも含め、現場状況を確認中。その後、水たまりはH3東エリアの外堰の外側にあり、付近に側溝がないことを確認。また、地下水バイパスの移送配管ならびに付近にある堰内にたまった雨水を移送する配管の外観に異常がないことを確認。水たまりの汚染状況を確認したところ、バックグラウンドと同等(100cpm)、塩分濃度が0%、pH測定値が8.3だった。

水たまりの放射能を分析した結果は以下のとおり。

・セシウム 134 検出限界値未満(検出限界値:0.6 Bg/L)

・セシウム 137 1.9 Bq/L

・全ベータ 16.5 Bg/L

水たまりの水を回収するとともに、引き続き、当該水の発生原因等を調査する。

調査の結果、同エリアにおいて、新設タンクの水張試験に使用したろ過水を、試験後に外堰内へ排水しており、外堰内に排水した水は滞留する状況であった。水張試験後の排水が当該水たまりと関連があるか検証するため、同エリアの外堰内に水張をした結果、水張した水が、外堰に染み出すことが判明。以上のことから、1月15日に確認した水たまりはタンクの水張試験に使用したろ過水と判断。

・2月2日に排水を予定していた地下水バイパス一時貯留タンクグループ2について、1月23日に 排水した地下水バイパス一時貯留タンクグループ1の残水が一部混入した可能性があり、念のた め再分析するため、排水を中止。なお、地下水バイパス一時貯留タンク1の水が混入したと思われ る原因については、今後調査する。

【1~4号機サブドレン観測井のサンプリング結果】

<特記事項>

現時点での特記事項なし

【1号機放水路のサンプリング結果】

<特記事項>

現時点での特記事項無し

その他

【陸側遮水壁】

現時点での特記事項なし

【雑固体廃棄物焼去設備】

現時点での特記事項なし

【その他設備の不具合・トラブル】

現時点での特記事項なし

【けが人・体調不良者等】

現時点での特記事項なし

【その他】

・メガフロート津波等リスク低減対策工事に伴い、起重機船が港湾内に入港する際、1~4 号機取水路開渠前に設置したシルトフェンスを開閉(1月9日午前11時42分にシルトフェンス開、午後1時にシルトフェンス閉)。なお、シルトフェンスは二重に設置しており、一方のシルトフェンスは、1月8日から1月10日の期間解放する。(天候により順延する可能性あり。)

1月21日午後、発電所構内で作業していた協力企業の作業員の方が、意識不明の状態となり、ただちに緊急搬送したものの、同日、お亡くなりになられました。ご冥福をお祈り申し上げるとともに、亡くなられた方のご家族へ、お悔やみ申し上げます。

- ・メガフロート津波等リスク低減対策工事に伴い、起重機船が港湾外に出港する際、1~4 号機取水 路開渠前に設置したシルトフェンスを開閉(3 月 19 日午前 9 時にシルトフェンス開、同日午前 9 時 52 分にシルトフェンス閉)。
- ・メガフロート津波等リスク低減対策工事に伴い、港湾内に起重機船が入退港およびメガフロートが入港する際、1~4号機取水路開渠前に設置したシルトフェンスの開閉作業を行う。日程は以下のとおり。

<シルトフェンス開閉>

起重機船の入退港のため 5月8日午前8時40分開・午後0時18分閉

<シルトフェンス開閉予定日>

メガフロートの入港のため 5月16日 開

5月17日 閉

※天候の影響により順延する可能性あり。