2017年1月1日以降の実績

1号機

・原子炉注水量について、1月5日以下のとおり低減操作(STEP②)を実施。

操作開始時間:午前10時40分 操作終了時間:午前10時45分 原子炉注水量:4.0 m³/h→3.4 m³/h

操作前後において、原子炉圧力容器底部温度、原子炉格納容器内温度、格納容器ガス管理設備ダストモニタ等のプラントパラメータに有意な変動がないことを確認。引き続き、プラントパラメータを監視し、原子炉圧力容器底部温度および原子炉格納容器内温度の上昇が想定の範囲(低減操作前と比較して7℃以内)で安定したことを確認後、2017年1月下旬に次の低減操作(STEP③)を実施予定。

・原子炉注水量について、1月24日、以下のとおり低減操作(STEP③)を実施。

操作開始時間:午前 10 時 32 分 操作終了時間:午前 10 時 38 分 原子炉注水量:3.5 m³/h→3.0 m³/h

操作前後において、原子炉圧力容器底部温度、原子炉格納容器内温度、格納容器ガス管理設備ダストモニタ等のプラントパラメータに有意な変動がないことを確認。引き続き、プラントパラメータを監視し、原子炉圧力容器底部温度および原子炉格納容器内温度が安定したことの確認を実施。

- ・1 号機使用済燃料プール代替冷却系の1次系冷却ポンプの点検のため、1月24日午前5時55分に冷却を停止。冷却停止時の水温は17.7℃。冷却再開予定の2月11日午後5時までの使用済燃料プールの水温上昇は約23.1℃と評価されることから、運転上の制限値60℃に対して余裕がある。その後、点検作業が終了したことから、2月11日午後3時11分に起動。運転状態について異常はない。起動後の使用済燃料プール水温度は23.0℃(停止時17.7℃)。
- ・1 号機の原子炉注水量については、1 月 24 日の低減操作(STEP③)以降、プラントパラメータの監視を継続してきたが、原子炉圧力容器底部温度および原子炉格納容器内温度が安定していることを確認できた。これにより1月31日をもって、2016年12月14日より開始した1号機の原子炉注水量低減を完了とした。1月31日午後6時現在の原子炉注水量は、3.0 m³/h で安定。
- ・2月3日午後0時13分頃、1号機タービン建屋地下において、作業用フィルター付近のドレン受けから水が溢れ出た痕跡があると、協力企業作業員から緊急対策本部に連絡有。 午後3時現在、現場状況を確認中。

その後、当社社員が現場を詳細に確認したところ、当該ドレン受けから水は溢れ出ておらず、当該ドレン受け(容量約1,000 リットル)の中に、水が約1リットル溜まっている状況を確認。なお、当該ドレン受けに溜まっている水は、前日2月2日、当該フィルターの交換作業を実施した際に発生した残水と判断した。

・2月10日午前6時35分頃、原子炉格納容器ガス管理設備の放射線検出器A系が故障し、A系監視不能と判断、なお原子炉格納容器ガス管理設備B系については正常に動作しており、指示

値に異常はなく、プラントデータ監視に支障はない。また、プラントデータ(原子炉圧力容器底部温度、格納容器内温度等)の異常、モニタリングポスト指示値の有意な変動はない。今後、原因の調査および当該設備の点検を実施。状況確認したところ、原子炉格納容器ガス管理設備の放射線検出器(以下、「当該検出器」という。)を冷却する装置において、冷媒中の不純物が凍結したことによる詰まりが発生したことで、放射能測定が出来ない状態になっていたことを確認。その後、冷却装置の点検を実施し、当該検出器の指示値に異常がないことを確認したことから、2月12日午前9時42分に当該検出器は監視可能な状態に復帰と判断。

・1号機使用済燃料プール(以下、「SFP」という。)代替冷却系の一次系については、当該系統の一次系冷却ポンプ点検のため2月16日午後2時26分に停止し、その後、予定作業が終了したことから、同日午後3時52分に冷却を再開。運転状態については、異常のないことを確認。起動後のSFP水温度は、21.9 (停止時21.8)

2 号機

- ・2号機使用済燃料プール(以下、「SFP」という。)代替冷却系の一次系については、現在使用していない不要な制御盤の撤去作業に伴い、1月17日午前10時13分に冷却を停止。冷却停止時のSFP水温度は23.7℃。その後、予定作業が終了したことから、午後0時54分に起動。起動時のSFP水温度は23.8℃。
- ・2号機原子炉格納容器ガス管理設備については、ホースの交換作業のため、特定原子力施設に係る実施計画「Ⅲ 特定原子炉施設の保安」第1編第32条第1項(保全作業を実施する場合)を適用し、2月28日午前10時7分より作業を開始。その後、作業が終了したことから同日午後1時42分に当該設備を起動。動作確認において異常がないこと、および短半減期核種の指示値に有意な変動がないことから、同日午後7時に特定原子力施設に係る実施計画「Ⅲ 特定原子炉施設の保安」第1編第32条第1項(保全作業を実施する場合)の適用を解除。
- ・2号機原子炉格納容器ガス管理設備については、ホースの交換作業のため、3月3日午前10時6分から特定原子力施設に係る実施計画「Ⅲ 特定原子炉施設の保安」第1編第32条第1項(保全作業を実施する場合)を適用し作業を開始。その後、作業が終了したことから同日午後12時11分に当該設備を起動。動作確認において異常がないこと、および短半減期核種の指示値に有意な変動がないことから、同日午後3時5分に特定原子力施設に係る実施計画「Ⅲ 特定原子炉施設の保安」第1編第32条第1項(保全作業を実施する場合)の適用を解除。

3号機

- ・3号機使用済燃料プール(以下、「SFP」という。)代替冷却系の一次系については、現在使用していない不要な制御盤の撤去作業に伴い、1月18日午前9時57分に冷却を停止。冷却停止時のSFP水温度は22.8℃。その後、予定作業が終了したことから、午後1時50分に起動。起動時のSFP水温度は22.9℃。
- ・3号機の原子炉注水量について、以下の通り低減操作(STEP①)を実施。 操作時間 :午前10時14分 原子炉注水量:4.5m³/h→4.1m³/h

操作前後において、原子炉圧力容器底部温度、原子炉格納容器内温度、格納容器ガス管理設備ダストモニタ等のプラントパラメータに有意な変動がないことを確認。

引き続き、プラントパラメータを監視し、原子炉圧力容器底部温度および原子炉格納容器内温度の上昇が想定の範囲(低減操作前と比較して7℃以内)で安定したことを確認後、2月15日に次の低減操作(STEP②)を実施予定。

- ・使用済燃料プール(以下、「SFP」という。)代替冷却系の一次系については、当該系統の配管 清掃のため、3月1日午前5時16分に停止。冷却停止時のSFP水温度は19.2℃。
- ・3号機の原子炉注水量については、2月22日の低減操作(STEP③)以降、プラントパラメータの監視を継続してきたが、原子炉圧力容器底部温度および原子炉格納容器内温度が安定していることを確認。これにより3月1日をもって、3号機の原子炉注水量低減を完了とする。3月1日午後5時現在の原子炉注水量は、2.9 m³/h で安定。

4号機

現時点での特記事項なし

5号機

現時点での特記事項なし

6号機

現時点での特記事項なし

水処理装置および貯蔵設備の状況

【タンクパトロール結果】

現時点での特記事項なし現時点での特記事項なし

【H4.H6エリアタンクにおける水漏れに関するサンプリング結果】

現時点での特記事項なし

【地下貯水槽に関する水のサンプリング結果】

現時点での特記事項なし

【セシウム除去設備】

・3月2日午前11時45分頃、集中廃棄物処理施設高温焼却炉建屋内東側において、水溜まりがあることを協力企業作業員が発見。水溜まりは堰内に留まっており、外部への流出はな

い。現場を確認したところ、水溜まりは第二セシウム吸着装置(SARRY)のフィルター付近にあり、範囲は約80m×60cm。なお、漏えいの継続はなく堰内に留まっている。水溜まりは、第二セシウム吸着装置のフィルターに接続されたベント配管の接合部のビニール養生箇所に漏れた跡が認められたことから、当該装置の処理水と判断。水溜まりの量は約0.3Lで同日午後1時50分に拭き取りが完了。なお、第二セシウム吸着装置は2017年2月28日から停止中。水溜まりの原因を調査したところ、当該装置のフィルターに接続された配管と耐圧ホースの継手部に漏れ跡が確認されたことから、継手部からの漏れと推定。3月3日のSARRY起動前までに、耐圧ホースの交換、ろ過水による漏えい確認、養生の見直し等を実施。

【多核種除去設備(ALPS)】

・1月11日午後7時頃、福島第一原子力発電所既設多核種除去設備A系において、吸着塔出口弁のグランド部(軸封部)より5分に1滴の割合で滴下があることを協力企業作業員が発見。滴下範囲は約15cm×15cmです。なお、水溜まりは建屋内の堰内に留まっている。また、既設多核種除去設備は循環待機中であり、操作は行っていない。午後7時45分頃、吸着塔出口弁のグランド部(軸封部)の増し締めを実施し、グランド部からの滴下は停止。また、水溜まりの拭き取りを実施し、念のため、当該弁の養生を実施。

【増設多核種除去設備】

現時点での特記事項なし

【高性能多核種除去設備】

現時点での特記事項なし

【淡水化装置】

・1月9日午前10時46分頃、4号機タービン建屋内の淡水化装置(建屋内RO設備)(A)において、ろ過処理水受けタンク入口弁のグランド部より水の滴下があることを当社社員が発見。漏えい範囲は2m×3m×1mm。漏えい量は約6L。当該弁のグランド部の増し締めを行い、午前11時15分に滴下は停止。滴下した水は当該エリアの堰内に留まっている。その後、滴下した箇所の床面の溜まり水をスミヤ測定した結果、周囲と比較して有意な汚染は確認されていない。午後2時30分頃、床面に滴下した水の拭き取りを実施した。当該弁グランド部からの滴下については、増し締めにより滴下が停止したが、念のため、滴下箇所をビニール養生している。なお、当該弁については、建屋内の淡水化装置(建屋内RO設備)(A)のろ過器内部点検のため、1月7日より閉めている。今後、淡水化装置(建屋内RO設備)(A)の当該弁の点検等を行っていく。

【RO濃縮水処理設備】

現時点での特記事項なし

【RO濃縮廃液タンク水処理設備】

・1月6日午前10時10分頃、福島第一原子力発電所構内H5タンクエリア西側にある、RO

濃縮水槽から多核種除去設備へRO濃縮塩水を移送するポンプの出口弁より、5~10秒に1滴の水の滴下があることを、協力企業作業員が発見。床面に滴下した水の量は、約20L(約2m×1m×深さ1cm)で、床面に留まっており、周辺に流れた形跡はない。当該弁の保温材を取り外して状況を確認したところ、当該弁からの水の漏えいは確認されていない。水の滴下箇所床面の表面線量率を測定した結果(2箇所)、1箇所はバックグラウンドと同等、もう1箇所はバックグラウンドの約10倍であったが、滴下している水を直接スミヤろ紙にしみ込ませ測定した結果、バックグラウンドと同等であり汚染は確認されていない。よって、滴下した水は、保温材にしみ込んでいた雨水等が滴下したものと判断した。・1月20日午前11時58分頃、福島第一原子力発電所構内の16タンクエリア、東側におい

・1月20日午前11時58分頃、福島第一原子力発電所構内のH6タンクエリア 東側において、RO濃縮水供給ポンプ移送配管の弁より、水が2分に1滴程度で滴下していることを協力企業作業員が発見。滴下範囲については、約30cm×60cm×深さ1mm。なお、滴下した水については、堰内に留まっており、堰外への漏えいはないが、RO濃縮水供給ポンプを停止した。当該弁の保温材から水が滴下していたため、保温材を取り外して状況を確認したところ、当該弁からの水の漏えいは確認されていない。また、滴下した水を直接測定した結果、バックグラウンドと同等であることを確認。このため、滴下した水は、当該移送配管内のRO濃縮水ではなく、保温材にしみ込んでいた雨水等が滴下したものと判断。準備が整い次第、RO濃縮水供給ポンプの運転を再開。

【その他】

- ・1月11日午前9時40分頃、福島第一原子力発電所構内のJ1タンク東エリア 北側にある、雨水淡水化処理受入タンクのサンプリング弁の閉止キャップ付近からにじみがあることを協力企業作業員が発見。その後、当社社員が現場状況を確認し、当該閉止キャップを取り外したところ、20秒に1滴程度の滴下を確認。午前10時48分、当該閉止キャップのシールテープ処理を行い、再度閉止キャップを取り付けたところ、滴下の停止を確認。なお、滴下した水は当該エリアの堰内に留まっており、外部への流出はなし。また、当該堰内にはこれまでの降雨により雨水が1cm程度溜まっている。雨水淡水化処理受入タンクの水質については以下のとおり。
 - •全ベータ:2.1×104Bq/L
 - ・セシウム 134:検出限界値未満(検出限界値:7.4×100Bq/L)
 - ・セシウム 137:2.0×101Bq/L
 - ※採取日:2017年1月10日
- ・2月16日午前中に実施した定期パトロールにおいて、港湾内に係留しているメガフロートの9区 画あるうちの北側1区画のバラスト水位*が前回測定(2017年1月19日)した値より約40 cm上 昇し、海水面と同じ高さにあることを当社社員が確認。

前回測定(2015年9月19日)したバラスト水の分析結果は以下のとおり。

- ・セシウム 134:0.72Bq/L
- ・セシウム 137:1.99Bq/L
- ・ストロンチウム:0.38Bq/L
- ・トリチウム:106Bq/L

メガフロート近傍の福島第一港湾内北側における海水核種分析結果について、前回パトロール (2017年1月19日)以降で有意な変動はない。

*船体を安定させるために船底のタンク等に貯留する水

- ・港湾内メガフロートのバラスト水位上昇について、本日(2月16日)採取した当該区画のバラスト水の分析結果は以下のとおり。
- ・セシウム 134 :検出限界値(0.63 Bq/L)未満
- ・セシウム 137 :2.72 Bq/L
- ・ストロンチウム:分析中
- ・トリチウム : 分析中

また、2015年9月19日に採取した当該区画のバラスト水の分析結果について、下記の通り訂正。

【訂正後】

- ・セシウム 134 :検出限界値(0.72 Bq/L)未満
- ・ストロンチウム:検出限界値(0.38 Bq/L)未満
- ・トリチウム :検出限界値(106 Bq/L)未満

【訂正前】

- ・セシウム 134 : 0.72 Bq/L
- ・ストロンチウム:0.38 Bq/L
- ・トリチウム :106 Bg/L
- ・2月17日午後2時19分頃、増設多核種除去装置A系のブースターポンプ付近から1秒に1滴程度で水が滴下していることを協力企業作業員が発見。

同日午後2時20分に当該ポンプを停止後、滴下が止まったことを確認。

なお、滴下した水については、堰内に留まっており堰外への漏えいはない。

現場を確認したところ、滴下した水は当該ポンプメカニカルシール部からのリーク水であることが判明した。メカニカルシール部には、リーク水を受ける養生を実施していたが、 滴下したリーク水が養生部以外に滴下していることを確認した。

なお、滴下した水は、当該ポンプ周りの堰内(20cm×100cm)に1cm 程度で溜まっており、 滴下量は約2Lと推定した。滴下した水については、午後3時45分に拭き取りを完了した。 養生の手直しを実施後、当該ポンプを再起動しており、養生部以外への滴下がないことを 確認。

- ・港湾内メガフロートのバラスト水位上昇について、2月16日に採取した当該区画のバラスト水の 分析結果は以下のとおり。
 - ・ストロンチウム:検出限界値(0.599Bq/L)未満
 - ・セシウム 134 :検出限界値(0.63Bq/L)未満
 - ・セシウム 137 :2.72Bq/L
 - ・トリチウム : 検出限界値(80Bq/L)未満

引き続き、当該区画への海水の流入状況を調査予定。

・バラスト水位上昇が確認された北側の区画について、水中カメラによる調査を実施した結果、既にお知らせしている変形と割れらしきものの他に、底面より高さ約80cmの位置に取り付けられた補強板と北側壁面の接合部近傍に10cm程度(推定)の割れらしきものがあることを確認。なお、当該区画の北西側外壁面に接触痕があることを確認。割れらしきものが確認された箇所について、今後、補修方法を検討し対応を図るとともに、引き続き、メガフロートの外観点検を実施。

サブドレン他水処理施設

以下、排水実績のみ記載。

<排水実績>

- ・一時貯水タンクA 12 月 31 日午前 10 時 4 分~午後 4 時 47 分。排水量 976 m³
- •一時貯水タンクB 1月2日午前9時57分~午後3時3分。排水量737 m³
- ・一時貯水タンクC 1月4日午前9時57分~午後2時22分。排水量639 m³
- ・一時貯水タンクD 1月5日午前9時42分~午後4時17分。排水量954 m³
- ・一時貯水タンクE 1月6日午前10時6分~午後3時45分。排水量819 m³
- ・一時貯水タンクF 1月7日午前10時22分~午後3時29分。排水量740 m³
- ・一時貯水タンクG 1月9日午前9時58分~午後3時15分。排水量767m³
- ・一時貯水タンクA 1月11日午前10時7分~午後3時18分。排水量749m³
- ・一時貯水タンクB 1月12日午前10時9分~午後3時16分。排水量743m3
- ・一時貯水タンクC 1月14日午前9時48分~午後2時45分。排水量717m³
- ・一時貯水タンクD 1月15日午前10時14分~午後3時17分。排水量732m3
- ・一時貯水タンクE 1月18日午前10時1分~午後3時12分。排水量755m3
- ・一時貯水タンクF 1月19日午前10時27分~午後4時12分。排水量836m3
- ・一時貯水タンクG 1月20日午前10時9分~午後3時35分。排水量789 m³
- ・一時貯水タンクA 1月21日午前10時10分~午後3時10分。排水量726 m³
- •一時貯水タンクB 1月23日午前10時1分~午後2時59分。排水量722 m³
- ・一時貯水タンクC 1月25日午前10時6分~午後3時1分。排水量712 m³
- ・一時貯水タンクD 1月26日午前10時6分~午後2時50分。排水量686 m³
- ・一時貯水タンクE 1月27日午前10時3分~午後2時9分。排水量593 m³
- ・一時貯水タンクF 1月29日午前10時9分~午後3時5分。排水量714m³
- ・一時貯水タンクG 1月30日午前10時5分~午後4時19分。排水量905 m³
- ・一時貯水タンクA 2月1日午前10時~午後3時44分。排水量835 m³
- ・一時貯水タンクB 2月2日午前10時8分~午後1時45分。排水量527 m³
- ・一時貯水タンクC 2月4日午前10時19分~午後1時55分。排水量520 m³
- ・一時貯水タンクD 2月5日午前9時31分~午後1時1分。排水量506 m³
- ・一時貯水タンクE 2月6日午前10時8分~午後1時47分。排水量529 m³
- ・一時貯水タンクF 2月9日午前10時7分~午後12時35分。排水量356 m³
- ・一時貯水タンクG 2月10日午前9時57分~午後1時49分。排水量560 m³
- ・一時貯水タンクA 2月11日午前10時4分~午後2時23分。排水量627 m³
- ・一時貯水タンクB 2月13日午前9時59分~午後2時29分。排水量654m3
- ・一時貯水タンクC 2月15日午前10時11分~午後0時43分。排水量364 m³
- ・一時貯水タンクD 2月16日午前10時5分~午後2時56分。排水量703 m³
- ・一時貯水タンクE 2月17日午前10時1分~午後3時21分。排水量794m³
- ・一時貯水タンクF 2月19日午前10時9分~午後3時50分。排水量825 m³
- ・一時貯水タンクG 2月22日午前10時2分~午後2時54分。排水量706 m³
- ・一時貯水タンクA 2月23日午前9時45分~午後3時53分。排水量890 m³

- ・一時貯水タンクB 2月24日午前10時4分~午後4時47分。排水量976 m³
- ・一時貯水タンクC 2月25日午前10時9分~午後3時52分。排水量828 m³
- ・一時貯水タンクD 2月27日午前10時10分~午後3時10分。排水量724 m³
- •一時貯水タンクE 2月28日午前10時~午後4時13分。排水量902 m³
- ・一時貯水タンクF 3月1日午前9時53分~午後4時36分。排水量976 m³
- ・一時貯水タンクG 3月3日午前10時6分~午後2時25分。排水量627 m³

地下水バイパス

以下、排水実績のみ記載。

<排水実績>

- ・一時貯留タンクグループ3 1月3日午前9時53分~午後4時38分。排水量1.669 m³
- ・一時貯留タンクグループ2 1月10日午前9時55分~午後5時28分。排水量1.895 m³
- ・一時貯留タンクグループ1 1月17日午前10時~午後5時28分。排水量1,842 m³
- ・一時貯留タンクグループ3 1月24日午前10時4分~午後5時37分。排水量1.831 m³
- ・一時貯留タンクグループ2 1月31日午前10時24分~午後5時30分。排水量1,793 m3
- ・一時貯留タンクグループ1 2月7日午前10時9分~午後4時54分。排水量1.693 m³
- ・一時貯留タンクグループ3 2月14日午前10時16分~午後4時56分。排水量1.673 m³
- ・一時貯留タンクグループ2 2月21日午前10時22分~午後5時22分。排水量1,798 m³
- ・一時貯留タンクグループ1 2月28日午前10時15分~午後8時16分。排水量1,787 m3

<特記事項>

現時点での特記事項なし

【1~4号機サブドレン観測井のサンプリング結果】

<特記事項>

現時点での特記事項なし

【1号機放水路のサンプリング結果】

<特記事項>

現時点での特記事項なし

その他

現時点での特記事項なし

【陸側遮水壁】

現時点での特記事項なし

【雑固体廃棄物焼却設備】

現時点での特記事項なし

【その他設備の不具合・トラブル】

- ・1月11日午後0時18分頃、福島第一原子力発電所構内の乾式キャスク仮保管設備の第2レーン上にある5Dキャスクにおいて、一次蓋と二次蓋間の圧力の異常を示す警報が発生。その後、当該警報は発生と復帰を繰り返している。圧力監視は2系統で行い、1系統については正常値を示している。なお、当該キャスク近傍のエリア放射線モニタおよびモニタリングポスト指示値に有意な変動はなし。当社社員が、現場で測定器を用いて当該キャスクの蓋間圧力(警報設定値:250kP以下)を確認したところ、測定値は322kPa、正常値を示している計器の指示値は314.5kPaであり、測定値とほぼ同等の値であったことから、当該警報発生の原因は、計器の故障であると判断。当該計器は、今後準備が整い次第、点検を実施。
- ・1月12日午前11時2分頃、福島第一原子力発電所4号機廃棄物処理建屋大物搬入口内に設置されている使用済燃料プール代替冷却系に接続されているホースのドレン弁付近から水が滴下しているとの連絡が、協力企業作業員から緊急時対策本部に入った。午前11時30分、当社社員が現場状況を確認したところ、使用済燃料プール代替冷却系と塩分除去装置をつないでいた配管(現在塩分除去装置は取り外している)にあるドレン弁の閉止栓からにじみがあり、その下部に水たまりがあることを確認。水たまりの範囲は、約1.5m×1m×深さ1mm。水たまりは堰内に留まっており、堰外への漏えいはなし。なお、4号機使用済燃料プールは燃料の取出しが完了している。その後、午前11時59分、拡大防止処置として当該閉止栓をビニール養生実施。その後、当社社員が使用済燃料プール代替冷却系と塩分除去装置をつないでいた配管(現在塩分除去装置は取り外している)の端部にあったビニール養生を外し、現場状況を詳細に確認したところ、当該配管の端部が開放状態となっており、そこから水が流れ出し、ビニール養生およびドレン弁表面を伝わって、閉止栓から滴下していたことを確認。

当該配管の端部については、午後2時45分に、開放部からの水の漏えいが起こらないように閉止栓を取り付け、ビニール養生実施。午後4時25分に、水の滴下が止まったことを確認。なお、水が滴下した要因は、当該配管の上流側にある使用済燃料プール代替冷却系と塩分除去装置との連絡弁(閉状態)から水が漏えいしたものと考える。

- ・2016年12月29日午後2時20分頃発生した福島第一原子力発電所構内H8タンクエリア付近にあるRO濃縮水移送ポンプ室内における水溜まり発見について、1月12日、当該ポンプ配管の運転圧力による漏えい確認を実施したところ、ポンプ出口側圧力計の取り出し配管にある弁のフランジ部から、にじみがあることを確認。当該フランジ部について、ガスケット交換等の修理を実施する。
- ・1月22日午前8時46分頃、福島第一原子力発電所構内G4タンクエリア付近にあるポンプ室において、数カ所の水溜まりがあることをパトロール中の協力企業作業員が発見。当社社員が現場状況を確認したところ、水溜まり付近の配管からの漏えいは確認されなかった。また、水溜まりの水をスミヤ測定した結果、バックグラウンドと同等であることを確認。発見された水溜まりは、ケーブル貫通部等から浸入した雨水と判断し、拭き取りを実施した。
- ・1月24日午後2時20分頃、H1東タンクエリアにおいて、バルブ付近の保温材から滴下があることを、タンクパトロール中の協力企業作業員が発見。滴下は堰内にとどまっており、外部への流出の可能性はないと判断。当社社員にて現場確認を行ったところ、A1タンクに接続されている

配管に設置された弁から20秒に1滴程度の水の滴下(弁の下部に、20cm×15cm×1mmの水たまり)を確認。保温材を取り外して確認したところ、弁本体やフランジ部などからの水の滴下は確認されなかった。また、滴下した水をスミヤろ紙にて線量測定を実施したが、バックグラウンドと同等の値であったことから、滴下した水は、保温材にしみ込んだ雨水と判断。

- ・2016年11月22日に発生した地震後の現場パトロールで確認した1~4号機開渠前シルトフェンス、および5、6号機開渠前シルトフェンスの損傷について、1月25日に本復旧を完了。
- ・1月26日午前6時15分頃、構内においてビニール袋で養生中の2号機主変圧器の絶縁油が漏えいしていることを当社社員が発見。漏えい範囲は、約3~5m2で、漏えい量は約10L。午前6時35分、双葉消防本部に一般回線で連絡。現場確認の結果、2号機主変圧器絶縁油配管フランジ開口部を養生していたビニール袋が破れ、配管内に残留していた絶縁油漏えいと、漏えいの停止を確認。また、当該配管から漏えいした絶縁油は、2号機主変圧器の防油提(堰)内にあり、防油提(堰)外への漏えいはないことを確認。なお、午前7時20分に絶縁油の拭き取り、および中和処理を終了。その後、午前7時43分、富岡消防署より「その他漏えい事象」と判断。
- ・2016年12月14日に発生した4号機タービン建屋内に設置してある淡水化装置からの水の漏えいについて、A系およびB系の点検を実施した結果、耐圧ホースとステンレス配管のジョイント部に外力が加わり、ジョイント部のゴムリングのシール機能が低下したことが原因と推定。このため、当該ホースのジョイント部にサポートの取り付けを実施。その後、淡水化装置A系の漏えい確認を実施し、異常がないことが確認されたため、2月6日午後0時50分に運転を再開。
- ・2月18日午前9時00分頃、J8タンクの西側エリアにおいて、付近にある移送配管のエルボ部下部に約20cm×20cmの水溜まりがあることを、タンクパトロール中の協力企業作業員が発見。当社社員が現場状況を確認したところ、水溜まり付近の配管からの水の滴下は確認されず、水溜まりの水をスミヤ測定した結果、バックグラウンドと同等であることを確認。発見された水溜まりは、当該配管保温材にしみこんだ雨水等と判断し、拭き取りを実施した。
- ・2月24日)午後0時頃、使用済燃料を保管している乾式キャスク仮保管設備の3Bキャスクにおいて、一次蓋と二次蓋間の圧力計の指示が1系統で上昇し、その後変動を繰り返していることを確認。圧力監視は2系統で行っており、もう1系統については変動はない。

圧力計の指示は以下のとおり。

1系:390kPa(変動なし)

2 系:390kPa から 635kPa に変化し、その後変動を繰り返している。

なお、当該キャスク近傍のエリア放射線モニタおよびモニタリングポスト指示値に有意な変動はない。

当社社員が、現場で測定器を用いて当該キャスクの蓋間圧力を測定したところ、測定値は 396kPa であり、変動がなかった計器(1系)の指示値と同等の圧力であることを確認。このため、 圧力計指示値の変動原因は、計器(2系)の故障であると判断。 今後、準備が整い次第、当該計器の点検を実施。

【けが人・体調不良者等】

現時点での特記事項なし

【その他】

現時点での特記事項なし