耐震裕度に関する検討について

設備の地震応答解析については,静的地震力による解析と動的地震力による解析が あり,耐震上重要な設備(As及びAクラス)では両方の解析を実施している。配管 のように柔な設備については動的地震力による影響が大きくなるが,比較的剛な設備 については動的地震力による評価より静的地震力による評価が卓越する場合がある。 以下では,静的解析の保守性および動的解析の保守性について検討する。なお,動的 解析については下記の項目に着目して検討を実施する。

(動的解析の保守性に係る項目)

①解析モデル

②拡幅の有無

③解析手法

- ④減衰定数
- ⑤応力係数
- ⑥許容値
- ⑦その他(水平・上下応答の組合せ)
- 1. 静的解析の保守性について
- 1.1 機器・配管系の静的地震力による評価

耐震クラスAs, A クラスについては, S1 より算定される設計用最強地震による 地震力または静的地震力のいずれか大きい方の地震力に耐える設計が行われてい る。静的地震力としては建築基準法で定める震度の3 倍が建屋の評価に用いられ, さらに,その1.2 倍が機器・配管系の評価に用いられる。例えば静的水平地震力は 下記水平震度より求める。

> 水平震度 =3.0C_I (層せん断力係数) ×1.2 ・・式(1) C_I(せん断力係数) =R_t・A_i・C₀ ・・・式(2) R_t:建物・構築物の振動特性係数<u>(=0.8)</u> A_i:せん断力係数の高さ方向の分布係数 C₀:標準せん断力係数(=0.2)

1.2 静的地震力の大きさ

式(1)で計算される静的水平震度, S2 地震動による床加速度(×1.2),および中 越沖地震による床加速度(×1.2)の比較を7号機原子炉建屋について図1に示す。 設計に用いる静的水平震度は、全てのレベルにおいてS2による床加速度および 中越沖地震による床加速度より大きい。したがって、原子炉建屋の全てのレベル に設置される設備について、比較的剛であれば、静的震度による評価はS2 地震動 さらには中越沖地震による震度を超えた評価を実施していることを示す。

図1 S2・中越沖地震による床加速度および静的水平震度(7号機原子炉建屋)

1.3 静的解析と動的解析による評価の比較

7号機の主要設備を例にして,設計時の解析をもとに静的解析と動的解析の評価 結果の比較を行った。合わせて中越沖地震による評価(動的)の結果も示した。

	X1. 7万版版曲》時日 到时所有 254较(1)								
設備			ant (mt	発生応力(N/mm ²)					
		評価部位	評価 広力	静的	動的解析				
			νu•> J	解析	S 1	S 2	中越沖		
床	残留熱除去系ポンプ	基礎ボルト	せん断	6	_	4	5		
直設備	残留熱除去系熱交換器	基礎ボルト	せん断	27		15	17		
1用	原子炉隔離時冷却系ポンプ	基礎ボルト	引張	39		26	30		
	高圧炉心注水系ポンプ	基礎ボルト	せん断	10		6	7		
大町	原子炉圧力容器	基礎ボルト	引張	123		115	115		
空設備	炉心支持構造物	シュラウト゛サホ゜ートレク゛	軸圧縮	49	_	40	32		
1用	原子炉格納容器	上鏡	曲げ	20	_	19	27		
配 管	主蒸気系配管	配管	一次		267	311	136		
	残留熱除去系配管	配管	一次	_	176	196	239		

表1. 7号機設備の静的・動的解析の比較(例)

※:静的解析と S1 による動的解析を比較して大きい方の値を記載(小さい方は「-」)。

床置きの比較的剛な設備については,静的解析,S2による動的解析,中越沖地 震による動的解析による発生応力の関係は図1と同様になる。大型設備について は,発生応力は図1とは異なる傾向になるが,静的解析はS2や中越沖地震による 動的解析と同等の評価となる。配管のように柔な設備については静的地震力より 動的地震力が卓越する結果となっている。つまり,比較的剛な設備については, 静的解析により十分に裕度を持たせた設計となっており,また,静的解析による 許容値は許容応力状態IIIASに基づくため,中越沖地震による評価も同様にIIIAS に基づく許容値を満足すると考えられる。

2. 動的解析の保守性について

前節で述べたように,配管のように柔な設備については静的地震力より動的地 震力が大きい。ここでは,動的解析における保守性について検討する。 動的解析の保守性について,下記項目について配管系を例として検討を行う。

(動的解析の保守性に係る項目)

①解析モデル
 ②拡幅の有無

③解析手法

④減衰定数

⑤応力係数

⑥許容値

⑦その他(水平・上下応答の組合せ)

2.1 各保守性の係わりについて

配管モデルは、図2のように3次元でビーム と質点に簡素化され作成される。このモデルに て固有値解析を行い、固有周期: τ_i ,各固有 周期における固有モード: $\{u\}_i$ および刺激係 数: β_i (各モードの振れやすさを表す値)を 求める。応力の算出までは以下のようなステッ プとなる。

(1)応答加速度の導出

対象配管の減衰定数と設置位置における床 加速度から床応答スペクトルを作成し,各固有 周期: τ_iにおける応答加速度: α_iを求める。

図2 配管モデル化の例

配管モデルを用いた固有値解析による固有周期の算定は、床応答スペクトルからの設備の応答加速度の導出に影響し、固有周期が大小どちらにずれるのも望ましくなく、より現実に近い値となることが求められる。この意味において、配管モデルによる固有値解析自体について保守性を含ませることは考慮されない。

しかし,設計用床応答スペクトルの作成にあたっては,地盤物性,建屋剛性等の因子による地震動の変動を考慮し周期方向に±10%拡幅されている^{*1}。配管モデルによる固有周期が仮に現実と異なるとしても,この拡幅で保守性が確保されている。さらに,床応答スペクトルを作成する際に用いる減衰定数については試験の下限値で設定された規格基準値を用いており^{*2},結果,応答加速度は保守的に大きく設定される。

※1:JEAG4601-1987 より抜粋「床応答スペクトルに変動を与える因子(地盤物性,建屋剛性, 地盤ばね定数の算出式および減衰定数,模擬地震波の位相特性等)の影響を考慮して床応答 スペクトルを周期軸方向に±10%拡幅している。」

(2) 各モードの重ね合わせ

固有周期 i における固有モード: $\{u\}_i$, 刺激係数: β_i , 応答加速度: α_i によりモーメント: $\{M\}_i$ を求め, 各モードでの重ね合わせを行う。

$$\{M\} = \sqrt{\sum_{i=1}^{n} \{M\}_i^2} \quad \cdot \quad \cdot \quad \neq \quad \neq \quad (3)$$

スペクトルモーダル法では、図5に示すように各モードの時間的変化を考慮せ ず各モードの最大応答を重ね合せてモーメントを算出する。また、この各モード の重ね合わせを水平地震動と上下地震動の各々について実施し、水平地震動によ るモーメントと上下地震動によるモーメントを組合せて応力を算出する。つまり, 水平地震動と上下地震動の応答の時間的な相違も考慮されない評価となる。

図 5. スペクトルモーダル法における地震力の求め方(3 質点の例)

次節 2.2 では、現実の応答を模擬するために、各モードの時間的変化や水平地 震動と上下地震動の応答の時間的な相違を考慮した時刻歴解析による評価を行い、 スペクトルモーダル法におけるこのようなモードの重ね合せや水平・上下地震動 応答の組合せの保守性を評価する。(スペクトルモーダル法と時刻歴解析の流れの 比較を図5に示す。)

また,現行 JEAG では水平地震力と上下地震力は絶対値和で組合せるとあるが, 上下地震力は 静的解析で求める。本評価では,上下地震力は動的解析により求 めているため,絶対値和の組合せは過度に保守的であると考えられる。本文 5.2 項で述べたように上下地震力を動的に扱う場合は水平地震力と SRSS (2 乗和平方 根) で組合せることが現実的であるため,次節 2.2 では絶対値和の SRSS に対す る保守性も定量的に評価する。

図 5. スペクトルモーダル法と時刻歴解析

(3)応力の算出

算出された各質点におけるモーメントにより,断面係数:Z,応力係数:Bを用いて応力を算出する。第1種管の例を式(4)に示す。

・管台及び突合せ溶接式ティー	$S = \frac{B_1 P D_0}{B_1 P D_0} +$	$B_2 bMbp$	$+\frac{B_2 rMrp}{2}$	•••===================================
	2t	Zb	Zr	L(4)
	\smile	\smile	\smile	
	内圧によ	分岐管	主管の	
	る応力	の応力	応力	

Zb, Zr	:分岐管, 主管の断面係数
B1, B2b, B2r	:応力係数
D_0 , t , P	:管の外径,厚さ,圧力
Mbp, Mrp	:分岐管,主管の機械的荷重(自重,地震)によるモーメント

モーメントに配管の評価点の形状(直管,ティー,エルボ等)に応じた応力係 数を乗じて応力を算出する。規格基準の応力係数については,試験結果や FEM 解 析等により適切に定められているが,現実的にはある程度の保守性が含まれてい ると考えられる。

動的解析の結果となる応力には、このように多重の保守性が施されて求められ ており、さらには、許容値を求めるための規格基準に定める物性値(引張り強さ、 降伏点など)は、実際の材料の物性値(材料証明書で確認可)に対して保守的に 設定されている。

次節では、これらの保守性について配管系を例に定量的に評価する。

2.2 動的解析における保守性の定量的評価

動的解析の保守性を確認するために,残留熱除去系配管を例に3箇所選出し,表2のケースA~Yで解析を実施した(参考資料1-1参照)。

ケース Z の応力係数の保守性については,主蒸気系配管の管台部(ティー部) を例として, FEM 解析にて算出された応力と,応力係数で算出された応力を比較 して求めた(参考資料 1-2 参照)。

図6に各ケースの余裕度(={許容値-地震以外の応力}/地震による応力)の比較を示す。値は残留熱除去系配管3箇所の評価を平均して示したものである。また,ケースZの余裕度については,主蒸気系配管管台部の応力係数の保守性が残留熱除去系配管の応力係数の保守性と同じであると仮定して算出した。

これより,本報告書で用いた評価手法(ケース C)や規格基準の範疇での手法(ケース D)では余裕度は1.5倍程度であるが,規格基準の範疇を超えて現実的な応答と現実的な許容値を評価すれば,余裕度は3~4倍程度あると考えられる。

また、本項の冒頭で述べた①~⑦の動的解析の保守性の定量的な値については 表3のようにまとめられる。

7

	ケース	-7		法	減衰定数	許容値(許容応 力出能 \mathbf{r} s) ^{×1}		
			FRS 拡幅	水平・上下組合セ		/JA/恐田AS/		
	А		±10%	絶対値和	2.0%	規格基準値		
TEAC	В	スヘ゜クトルモータ゛ル	無し	絶対値和	2.0%	規格基準値		
JEAG の範疇	C 本評価手法		無し	SRSS	2.0%	規格基準値		
	D	時刻歷解析	—	代数和	2.0%	規格基準値		
	X	時刻歷解析	—	代数和	$7.5\%^{*2}$	規格基準値		
JEAG	Y	時刻歷解析		代数和	$7.5\%^{*2}$	材料証明書**3		
範疇外	Z	主蒸気系配管管台 FEM による応力係数の保守性をケース Y に乗じて余裕度を算出						

表 2. 動的解析保守性評価ケース

※1:余裕度=(許容値-地震以外の応力)/地震による応力

※2:減衰定数の現実的な値としては、過去の試験等から想定される平均値として 7.5%を用いた。
 ※3:材料証明書より求めた Sm=167MPa と 20℃での JSME 規格値 137MPa の比を規格基準による許容値(274MPa) に乗じた

^{※:}主蒸気系配管管台の FEM 評価結果と応力係数による 算出結果の比をケース Y に乗じた

動的解析の保守性に係る項目	保守性*1	備考
解析モデル	—	
拡幅(床応答スペクトル±10%拡幅の保守性)	約26% (26~27)	ケース B÷ケース A
水平・上下応答の組合せ(SRSS に対する絶対値	約38% (36~41)	ケース C÷ケース B
和の保守性)		
解析手法(時刻歴解析に対するスペクトルモーダル法の	約 22% (5~36) ※2	ケース D÷ケース C
保守性)		
減衰定数(現実的な値に対する規格基準値の保守	約 50% (45~58)	ケース X÷ケース D
性)		
許容値(材料証明書記載値に対する規格基準値の	約 26% (23~34)	ケース Y÷ケース X
保守性)		
応力係数(FEM に対する応力係数の保守性)	約 20%	FEM より算出

表3. 動的解析の保守性

※1 値は3箇所の平均値,括弧内は3箇所の値の最小値~最大値を示す。

※2 解析手法の保守性(時刻歴解析に対するスペクトルモーダル法の保守性)についてはタービン建屋に設置 される設備の代表として原子炉補機冷却系配管についても評価を行い,約34%の保守性があることを確認 している(参考資料1-3参照)。

床応答スペクトルの拡幅(±10%)については、本報告書の評価において実施 していない。これは、床応答スペクトルは、観測波または観測波をもとに計算さ れた建屋応答解析結果であるため地盤や建物に起因するずれは少ないことと、本 評価は設計ではなく中越沖地震における設備応答の再現が主目的であるため、拡 幅の適用は過度に保守的に値がずれると考えたことによる。

しかし,設計時と同様に±10%拡幅を考慮しても表3より保守性が3割弱減少 する程度であり,規格基準の範疇での評価(ケースD)でも余裕度は1以上を確 保でき,規格基準で定める許容値を満足する。

- 3. その他保守性評価
- 3.1 基礎ボルト評価

設計時および本評価においては、ポンプ基礎ボルト評価等に用いられる震度に ついて、水平、上下方向からそれぞれ最大値を取って応力の算出を行っている。

現実の状態を適切に再現するために,原子炉隔離時冷却系ポンプ基礎ボルトを 例として,時々刻々の水平方向(NS,EW)震度と上下方向震度により基礎ボルト に発生する引張り応力の時系列を評価した。その結果,設計時および本評価にお ける解析手法の保守性を確認した。(参考資料 1-4 参照) 3.2 配管レストレイント部摺動痕の評価

配管のレストレイントとの接触部に摺動痕が確認されている箇所について,解 析による評価を行い,現実と解析の振れ幅の比較を行った。4 号機の高圧炉心注水 系配管に地震による摺動痕と考えられる箇所が確認されたので,当該配管を例に 評価を実施した。その結果,測定された摺動痕長さ4mmに対して,設計と同等の 解析手法(スペクトルモーダル法)で9mmとの解析結果が得られ,解析の保守性 を確認した。<u>また,現実的な応答を評価するために,時刻歴解析を用いてさらに</u> 現実的な減衰定数として 5.0%および 7.5%を想定して解析を実施し,概ね実測値 に近い値が得られた。(参考資料 1-5 参照)

3.3 破損限界に対する保守的設定

現実の破損限界に対して規格基準上の許容値には十分な保守性があること,また, 実際の設備と同等の試験体にて実施した耐震信頼性実証試験により,実際の設備に は十分な保守性があることが確認されている。(参考資料 1-6 参照)

残留熱除去系配管による解析保守性の確認

1. 概要

残留熱除去系配管を例に,時刻歴解析を含めたより現実的な応答解析を実施し, 解析のもつ保守性を評価した。

2. 検討ケース

ケースY

表 1-1 は、規格基準の範疇で設定した 4 ケースの解析を示す。水平および上下方向の地震力は動的に取り扱い、スペクトルモーダル法における水平と上下の組合せについては NS-上下、EW-上下で組合せ、大きいほうの値を採用する。時刻歴解析については配管モデルに 3 方向(NS, EW,上下)の地震動を入力し時刻毎の応力を求める。表中のケース C は本評価の手法である。

また,表1-2に示すように,規格基準の範疇を超えてより現実に近いと考えられる条件(減衰定数,材料証明書)を考慮したケースも参考に実施した(ケース X,Y)。

評価対象となる残留熱除去系配管のモデル図と評価箇所を図 1-1 に示す。評価箇所 所については、地震による応力の比較的大きい①ティー部および②レデューサ部並 びに発生応力が最大となる③ティー部を選定した。

		FRS 拡幅	上下・水平 の組合せ	減衰定数*1			
ケースA		$\pm 10\%$	絶対値和	2.0%	JEAG		
ケース B	スペクトル	無し	絶対値和	2.0%	の範疇		
ケース C (本評価手法)		無し	SRSS ^{**2}	2.0%			
ケースD	時刻歷解析	_	2.0%				
表 1-2 検討ケース(規格基準範疇外)							
ケースX ケースDに減衰7.5% ^{*1} を適用							

表 1-1 検討ケース(規格基準範疇)

※1: 減衰定数 2.0%は規格基準値, 7.5%は諸試験から推定した現実的な値※2: SRSS=二乗和平方根

ケース X に材料証明書による許容値を適用

JEAG の範疇外

		1 次応力(MPa)			
評価点	合計	地震以外	地震に	值(Ⅲ _A S)	
	ЦРГ	による	よる	(MPa)	
評価箇所①(ティー部)	205	55	150		
評価箇所② (レデューサ部)	194	54	140	274	
評価箇所③ (ティー部)	239	129	110		

図 1-1 残留熱除去系配管モデル図

3. 評価結果

評価箇所①ティー部の評価結果を表 1-3,表 1-4 および図 1-2 に,評価箇所②レ デューサ部の評価結果を表 1-5,表 1-6 および図 1-3 に,評価箇所③ティー部の評 価結果を表 1-5,表 1-6 および図 1-4 に示す。

本評価の算出値は、上述したように応答をNS-上下、EW-上下に組合わせ、両者 組合せのうち荷重が大きくなるほうを採用している。しかし、3方向の地震動を考 慮しても時刻歴解析でより現実的な応答を解析することにより、今回の報告値に 用いた解析手法(ケースC)には保守性があることが確認できた。

また,規格基準の範疇外ではあるが,減衰定数や評価基準値により現実的な値 を想定したケース(X,Y)の計算結果より,現実には解析評価には2倍を超える 保守性が含まれていることが考えられる。

評価箇所①:ティー部

表 1-3 ①評価箇所ティー部の結果(規格基準の範疇)

	1	次応力(M	評価基準				
検討ケース	合計	地震以外 による	地震に よる	値(III _A S) (MPa)	余裕度*1		
ケースA	317		262		0.83		
ケース B (ケース A→拡幅無し)	260		205		1.06		
ケース C (ケース B→水平上下組 合せに SRSS)	205	55	150	274	1.46		
ケース D (時刻歴解析)	177		122		1.79		
表 1-4 ①評価箇所ティー部の結果(規格基準の範疇外)							

ケース X(ケース D→減衰 7.5%)	132		77	274	2.84
ケースY(ケースX&材料証明書)	132	55	77	約 330 ^{%2}	約 3.5

※1:余裕度=(評価基準値-地震以外による応力 55MPa)/地震による応力

※2: 材料証明書より求めた Sm=167MPa と 20℃での JSME 規格値 137MPa の比を 274MPa に乗じた値

13

ケースY(ケースX&材料証明書)

	1	次応力(M	評価基準				
検討ケース	合計	地震以外 による	地震に よる	値(III _A S) (MPa)	余裕度**1		
ケースA	304		250		0.88		
ケースB(ケースA→拡幅無し)	251		197		1.11		
ケース C (ケース B→水平上下組 合せに SRSS)	194	54	140	274	1.57		
ケースD(時刻歴解析)	156		102		2.15		
表 1-6 ②評価箇所レデューサ部の結果(規格基準の範疇外)							
ケースX(ケースD→減衰7.5%)	124	5 4	70	274	3.14		
		54					

表 1-5 ②評価箇所レデューサ部の結果(規格基準の範疇)

※1:余裕度=(評価基準値-地震以外による応力 54MPa)/地震による応力

124

※2:材料証明書より求めた Sm=167MPa と 20℃での JSME 規格値 137MPa の比を 274MPa に乗じた値

約 330^{※2}

約3.9

70

図 1-3 各検討ケースの余裕度比較(②レデューサ部)

ケースY(ケースX&材料証明書)

		1 次応力 (MPa)					
検討ケース	合計	地震以外 による	地震に よる	値(Ⅲ _A S) (MPa)	余裕度**1		
ケースA	319		190		0.76		
ケース B (ケース A→拡幅無し)	280		151		0.96		
ケース C (ケース B→水平上下組 合せに SRSS)	239) 129	110	274	1.31		
ケースD(時刻歴解析)	234		105		1.38		
表 1-8 評価箇所③ティー部の結果(規格基準の範疇外)							
ケース X(ケース D→減衰 7.5%)	201	120	72	274	2.01		
		129					

表 1-7 評価箇所③ティー部の結果(規格基準の範疇)

※1:余裕度=(評価基準値-地震以外による応力 129MPa)/地震による応力

201

※2:材料証明書より求めたSm=167MPaと20℃でのJSME規格値137MPaの比を274MPa に乗じた値

約 330^{※2}

約 2.7

72

図 1-4 各検討ケースの余裕度比較(③ティー部)

応力係数の保守性の検討(主蒸気系配管管台部)の評価

応力係数の保守性を確認するために主蒸気系配管管台(ティー部)について FEM 解析を行い,分岐管及び主管のモーメントに応力係数を乗じて算出された値と比較し 応力係数の保守性を確認した。

分岐管のモーメント*Mbp*及び主管のモーメント*Mrp*を入力条件としてFEM解析で 得られた応力と応力係数より算出された応力(式(2-1)の第2項+第3項)の結果を表 2-1に示す。応力係数の保守性は20%強(=89/71)であることがわかる。

•				
	地震・自重による応力	内圧による応力	一次応力	許容値
応力係数を用 いた評価	89 MPa [式(2-1)第 2 項+第 3 項]	47 MPa	136 MPa	274 MPa
FEM 解析	71 MPa	[八(2-1)分1項]	118 MPa	

表 2-1. 応力係数と FEM 解析による算出応力の比較

・管台(ティー部)1 次応力	$: S = \underbrace{\frac{B_1 P D_0}{2t}}_{\text{(1)} \text{(1)} \text{(2)}} + \underbrace{\frac{B_2 b M b p}{Zb}}_{\text{(1)} \text{(1)} \text{(2)}} + \underbrace{\frac{B_2 r M r p}{Zr}}_{\text{(2)} \text{(2)} \text{(2)}}$	・・・式(2-1)
	内圧によ 分岐管 主管の	
	る応力 の応力 応力	

CZb, Zr	:分岐管,主管の断面係数
<i>B</i> 1, <i>B</i> 2 <i>b</i> , <i>B</i> 2 <i>r</i>	:応力係数
D_0 , t , P	: 管の外径, 厚さ, 圧力
Mbp, Mrp	: 分岐管, 主管の機械的荷重(自重, 地震)によるモーメント

図 2-2 FEM 解析結果(応力コンター図)

タービン建屋に配置される設備の代表として原子炉補機冷却系配管を選出し,時刻 歴解析を実施した。表-3.1 に示すように,より現実的な評価手法である時刻歴解析の 結果に対して,本報告書の評価手法(スペクトルモーダル法)は約34%(=1.74÷1.29) の保守性があることが確認された。

解析方法		演草	1	次応力 (M	評価基準			
	FRS 拡幅	水平・上 下組合せ	减衰定数	合計	地震以外 による	地震に よる	値(III _A S) (MPa)	余裕度*
スペクトルモーダル (本評価手法)	無し	SRSS	2.00/	186	27	159	222	1.29
時刻歷解析		代数和	2.0%	145	27	118	233	1.74

表-3.1 動的解析保守性評価ケース

図-3.1 原子炉補機冷却系配管モデル図

1. 概要

設計時および本報告書におけるポンプ基礎ボルトの評価は、ポンプが設置され ている場所の水平方向応答、上下方向応答のそれぞれから最大震度を取って応力 の算出を行っている。

本検証では、地震の観測記録よりポンプ基礎ボルトに発生する応力を時系列で 評価し、設計時および本報告書におけるポンプ基礎ボルト評価の保守性を検証す る。評価対象は、地震記録が取れている基礎版上に設置される原子炉隔離時冷却 系ポンプの基礎ボルトの引張応力とする。

2. 評価方法

NS, EW 方向ごとに地震による転倒モーメントにより基礎ボルトに発生する引 張応力を算出した。評価式を以下に示す。ポンプ図を図 3-1 に示す。

・NS 方向転倒モーメントにより基礎ボルトに発生する引張応力

$$\sigma_{\rm NS} = \frac{W \cdot (C_{\rm H} + C_{\rm p}) \cdot h + M_{\rm p} - W(1 - Cv - C_{\rm p}) \cdot L_{1}}{N(L_{1} + L_{2}) \cdot A} \quad \cdot \quad \cdot \quad \vec{\mathfrak{K}}(3-1)$$

・EW 方向転倒モーメントにより基礎ボルトに発生する引張応力

$$\sigma_{\rm EW} = \frac{W \cdot (C_{\rm H} + C_{\rm p}) \cdot h - W(1 - Cv - C_{\rm p}) \cdot \ell_1}{n(\ell_1 + \ell_2) \cdot A} \qquad \cdot \cdot \cdot \vec{\mathfrak{K}}(3-2)$$

なお、 C_H は保守的にNS方向震度(C_{H_NS})とEW方向震度(C_{H_EW})の2乗和 平方とする。

$$C_{\rm H} = \sqrt{\left(C_{\rm H}_{\rm NS}\right)^2 + \left(C_{\rm H}_{\rm EW}\right)^2} \qquad \cdot \cdot \cdot \vec{x} (3-3)$$

W		: ボンブ重量
h		: 重心までの高さ
C_{V}		:上下方向地震動による震度
N,	n	:評価上引張力を受けるとして期待するボルト本数(N=2, n=2)
А		: 基礎ボルト断面積

3. 評価結果

評価結果を表 1 に示す。本地震における水平方向震度,上下方向震度の最大値 は両者とも0.44であり、応答倍率法で算出した引張応力は30MPaとなる。

一方、地震時にポンプは停止していたためポンプ振動による震度を考慮しない 場合の計算を行うと 6.3MPa となる。

さらに,現実的な評価として地震観測記録を用いて基礎ボルト引張り応力の時

系列を評価すると引張り応力が発生しない結果となった(図 3-2 参照)。これは, 水平方向震度と上下方向震度が同時に最大とならないことから,転倒モーメント がポンプ自重によるモーメントを上回らないためと考えられる。

したがって水平方向および上下方向の最大震度が同時に発生すると仮定した設 計時および報告書における評価方法は保守的であるといえる。

		水平震 度 :C _H	上下震 度 :C _v	ポンプ振動 による震 度:C _p	引張応力 (MPa)	許容値 (MPa)
設計時		0.33	0.28	0.37	25.5	
	報告書算出 値	0.44	0.44	0.37	30 ^{**1}	
中 池 郡	<u></u> 地震時のポ 也 ンプ停止を 考慮	0.44	0.44	0	6.3	456
	時系列評価 (図2)	0.44 ^{**2}	0.13 ^{**2}	0	引 張 応 力 は 発 生 せ ず	

表 3-1 評価結果

※1:設計時震度と中越沖地震により求まる震度比 1.14 を設計時の応力に乗じた 値

※2:最大の転倒モーメントが発生する時刻における震度

図 3-1 原子炉隔離時冷却系ポンプ外形図

図 3-2 基礎ボルト引張応力の算出結果

4号機配管レストレイント部摺動痕の評価

1. 配管レストレイント部摺動痕の確認

4 号機の高圧炉心スプレイ系配管についてサポートとの接触部に摺動痕を確認 した(図 4-1 参照。配管軸方向に 4mm。)

当該部は通常常温であるため熱膨張が原因とは考えにくく,中越沖地震による 摺動痕である可能性が高いため,本事象を解析で評価し摺動痕実測値との比較を 行った。

図 4-1. 摺動痕確認状況

2. 高圧炉心スプレイ系配管摺動痕の解析評価

本評価の解析手法については,設計時と同じスペクトルモーダル法および時刻 歴解析の2通りを実施した。設計時と本評価の解析条件を表1に示す。<u>また,現</u> 実的な応答を再現する観点から,減衰定数について,設計時の2.0%に加えて5.0% および7.5%についても評価を実施した。

	設計時	本評価			
解析条件	スペクトルモーダル法	スペクトルモーダル法 時刻歴解析			
圧力条件	14kg/cm ² (摺動部)	同左			
温度条件	100℃(摺動部)	同左			
材料	SM400C(摺動部)	同左			
述中午券	2.004	2.0%			
阀农足奴	2.0%	5.0%, 7.5%(現実的な評価として設定)			
7 力冬仲	- - - - - - - - - - - - - - - - - - -	中越沖地震観測波(基礎版上 TMSL-32.5m)			
八刀未件		拡幅無し			
水平・上下	水平方向(動的)・上下方向	水平方向・上下方向(両	3 方向の応答荷重を代		
	(静的)の荷重の組合せは	者とも動的)の荷重の 数和			
	絶対値和	組合せは SRSS			

表 4-1. 設計時と本評価の解析条件

図 4-2 高圧炉心スプレイ系配管のモデル化

3. 評価結果

解析結果を表2に示す。ケース1が設計時と同等の評価であり、実測値に対し て保守性を有することが確認された。また、現実的な応答の評価として、時刻歴 解析を用いて、さらに現実的な減衰定数として5.0%および7.5%を想定して解析 を実施し、概ね実測値に近い値が得られた。

	評価手法	減衰定数	解析結果	現地摺動痕測定値			
ケース1		2.0%	9mm				
ケース2	スペクトルモーダル法	スペックトルモータッル法 <u>5.0%</u>		<u>6mm</u>			
ケース3		<u>7.5%</u>	<u>5mm</u>	4			
ケース4		2.0%	бmm	411111			
ケース5	時刻歷解析	<u>5.0%</u>	<u>5mm</u>				
ケース6		<u>7.5%</u>	<u>4mm</u>				

表 4-2 管軸方向変位評価結果

(注) 解析結果は小数点以下を切り上げ

表 4-3 に固有周期と刺激係数を示す。水平方向(NS, EW)の応答が大きいモードは1次であり、本モードが摺動痕を発生させた主要モードと考えられる。

図4-3. モード図 (1次)

次数	固有	刺激係数				
	周期	X(NS)	Z(EW)	Y(上下)		
1次	0.149	1.773	2.562	0.296		
2 次	0.124	0.995	0.288	-1.397		
3次	0.122	0.245	0.147	-1.038		
4次	0.109	0.012	0.416	0.022		
5次	0.104	-0.360	0.106	-2.205		

表 4-3 固有周期, 刺激係数

破損限界に対する保守的設定

本文1項,2項では解析の持つ保守性について示したが(イメージ:図5-1の①) ここでは,破損限界に対する裕度(耐震裕度,イメージ:図5-1の②)を確認した既 往試験の内容(材料試験による実強度,および,実際の設備と同等の試験体にて実施 した耐震信頼性実証試験)をまとめた。

図5-1. 設備の応答値と設計許容限界等との関係(7号機のイメージ)

1. 現実の破損限界に対する許容値の保守性

図 5-2 に低合金鋼の引張曲線および規格基準上の引張り強さ(Su)・降伏点(Sy), を示す。実際の引張り強さ・降伏点に比べて規格基準の Su・Sy 保守的に設定され ている。

また,疲労強度については,図 5-3 に示すように,応力振幅に対する許容繰返し 回数のデータのベストフットカーブに対して,繰返し回数について 20 倍,応力振 幅に対して 2 倍の保守性を考慮して設計疲労曲線を定めている。

このように規格基準で定める許容値については,現実の材料の破損限界に対して 十分な裕度を有している。

図 5-3. 設計疲労曲線の定め方

25

2-1. 耐震信頼性実証試験の概要

(財)原子力発電技術機構(NUPEC)では昭和 55 年度から平成 16 年度にかけて (平成 15~16 年度は独立行政法人原子力安全基盤機構(JNES)),耐震上重要な施 設に対して,多渡津・大型高性能振動台を用いて耐震信頼性実証試験を実施してお り,次に示すように地震に対する安全性を実証的に明示するよう計画されている。

- (1)原子力発電所の安全上重要な設備については,耐震設計上強度的に十分な余裕 を持たせてあるが,試験体について巨大地震時に相当する加震試験を実施する ことにより,その余裕度を確認する。
- (2)巨大地震の際に機能維持を必要とする安全上重要な機器・配管,構造物を模擬した試験体を加振中に機能させて,所要の機能が発揮できることを実証する。

本試験は,実機と同一あるいは実機に近い縮尺模型試験体を用いて設備の耐震安 全性及び耐震裕度を確認した試験としての特徴を有し,貴重な試験データを提供す るものとなっている。

- 2-2. 耐震信頼性実証試験例
 - (1) BWR 炉内構造物
 - ・縮尺:1/1 (炉心機器は実機大)
 - ・構造:シュラウド等炉内構造物,制御棒駆動装置, 燃料集合体等から構成。炉内構造物と炉心系 機器の配置と相対寸法は実機と同様

(試験概要)

- ・制御棒挿入試験では,設計用地震動(S1,S2)の入力地震波で加振を行い, 加振中に制御棒を挿入させ,規定時間内に制御棒が炉内に挿入できることを 確認。
- ・S2の1.7倍に相当する入力地震波で,水平と上下2方向同時の加振試験を行い, 制御棒の挿入性や耐震設計上の安全余裕のあること確認。
- (2) BWR原子炉格納容器
 - ・縮尺:1/3.2
 - ・構造:格納容器本体、ドライウエル、サプレッションチェンバー、機器ハッチ、エヤロック等から構成

(試験概要)

・加振試験の前と後に漏洩率試験(空気)を行い格
 納容器の機能である機密性が損なわれないこと、
 水の振動による耐震性への影響の無いことを確認。

- ・S2の1.4倍に相当する入力地震波で,水平と上下2方向同時に加振試験を行い, 耐震設計上の安全余裕のあることを確認。
- (3) 原子炉圧力容器
 - ・縮尺:1/2
 - ・構造:原子炉圧力容器,スカート,スタビラ イザから構成

(試験概要)

- ・S2 の1.7倍に相当する入力地震波で、水平と上下 2方向同時加振試験を行い、耐震設計上の安全余 裕のあることについて確認。
- (4) 配管終局強度試験
 - ・実機配管系を模擬した3次元配管系モデル(200A, Sch40,水圧10.7 MPa)
 - ・付加質量 (弁), レストレイント, ティー, エルボ 付き

(試験概要)

- ・詳細解析で、1回の地震で破損する入力地震動:
 S_Aを求め、S_Aで加振したところ、5回目(1回の地震の繰返し数は60回)の加振で疲労き裂が貫通。
- ・設計と同様の評価で応力が規格基準上の許容値(許容応力状態IV_AS)に達する地震動: S_B を求めたところ, S_B は S_A に対して 1/10以下(現行の設計の保守性は 10 倍以上)であることを確認。

柏崎刈羽原子力発電所3号機 原子炉再循環系配管の ひび部の点検・調査結果について

平成20年6月5日

経年劣化影響に関する検討・調査の状況

- 中越沖地震後の設備健全性評価においては、下記の経年劣化事象の影響 について検討することとしている
 - ●粒界型応力腐食割れ(IGSCC)
 - KK3/5号機原子炉再循環系配管、KK2/3号機炉心シュラウド等のIGSCC(以下「SCC」)の顕在化している機器について、ひび寸法を測定し、構造強度評価を実施

●低サイクル疲労

建設時疲労評価の厳しい箇所について、新潟県中越沖地震による疲れ累積係数への影響を評価(解析評価の一環として実施)

●配管減肉(FAC)

耐震安全上重要な配管系について、顕著な減肉傾向の有無を調査

- SCCについては、対象機器に対して、順次超音波探傷試験(UT)によるひび寸法の測定を実施しているところ(KK-3/5号機PLR配管のUTを完了)
- ひび寸法測定後、中越沖地震時の各号機の原子炉建屋の応答(床応答スペクトル)に基づき、構造強度評価を実施予定

KK-3号機 原子炉再循環系配管のひび部の点検

■経緯

- ●前回の第9回定期検査時に原子炉再循環系配管の1継手にひびを確認。
- ●健全性評価により約13年の健全性を確認※し、約1年間の継続運転を 行った。
- 今回の定期検査において、計画通り配管を取替えるとともに、知見拡充のための点検を実施している。

※ 技術基準に適合しなくなると見込まれる時期の評価結果 健全性評価制度では、評価期間は最長5年間を限度として運転が許容されている

■ 点検内容

- 当該ひび部の継続運転中の応力腐食割れ(SCC)による進展状況について、超音波探傷試験(UT)により確認した(ひび部の深さ・長さの測定)。
- ひびの進展状況に関する知見拡充の観点から、今回の停止時(第10回定期検査)に配管からひび部を切り出して、ひび部の断面観察によりひびの状況を確認した。

ひび部の超音波探傷試験結果

■ 当該継手(全周)について、超音波探傷試験(UT)を実施した。

■ ひび部の測定結果は下表の通り。

		深さ ^{*1} (I	JT指示)	長さ ^{*2} (UT指示)		
的官外住	的官内厚	前回結果	今回結果	前回結果	今回結果	
625.4 mm	38.9 mm	3.5 mm	5.3 mm	26 mm	29 mm	

*1:「超音波探傷試験システムの性能実証」(PD)による結果 *2:健全性評価において、安全側に評価するとの観点から モデル化に採用した45°斜角探傷法による記録

当該継手において、前回確認したひび以外には 新たにひびと判断すべきものは確認されなかった。

前回健全性評価結果との比較

■今回のUTの測定結果について、前回評価したき裂進展予測と比較した。

切り出し配管内表面観察結果

ひび部の断面観察結果(深さ測定精度)

配管外径	副答内同	ひび深さ			
	的官内厚	切出前UT結果	断面観察結果		
625.4 mm	38.9 mm	5.3 mm	約5.6 mm		

■ひび部の断面観察を実施し、ひびの深さを確認。

■ひびの深さは、UTによる深さ測定値と同程度。
 ■UTによるひびの深さ測定精度に問題のないことを確認。

ひび部の断面観察結果(ひびの形態)

KK-1号機におけるひび(平成15年)との比較

ひびの形態は既往のひびの形態と有意な差は確認されなかった。

ひび部の断面観察結果(硬さ)

■硬さ測定用のサンプルでひびの先端部の硬さを確認。

ひびの先端部の有意な硬化は確認されなかった。

概略評価結果との比較

- ■JSME維持規格に基づく現行の健全性評価においては、SCCと疲労(熱荷重及び 地震によるもの)の組合せによるひびの進展評価を実施しており、これと同様の 評価方法を用いて、中越沖地震によるひびの進展量(疲労による進展量)につい て概略評価を行った。
 - 《評価条件》初期き裂:前回定期検査時の進展予測に基づく寸法(深さ7.6 mm、長さ44 mm)の 初期き裂を仮定
 - 地震荷重:KK-3観測波(384gal)とS₁(138gal)の比率から、現行の健全性評価において用いている地震力(1/3 S₁)の約10倍を仮定(等価繰り返し回数60回)
- ■概略評価の結果、疲労による進展量は約0.22 mmと算出した。
- ■一方、断面観察の結果、ひび先端部を含めてSCCの特徴を有しており、疲労によるひびの進展は明瞭には確認されなかった。

ひび部の点検・調査結果のまとめ

■今回の点検・調査の結果

- ●原子炉再循環系配管のひびについて、UTにより適切にひびを 検知し、また十分な精度で深さ寸法を測定できていた。
- ひびの大きさは、約1年間のプラント運転にともなうSCCの進展予測を下回っており、健全性評価手法は妥当であったと考えられる。
- 断面観察の結果から、ひびは粒界に沿って進展するSCC特有の 形態であり、地震によるひびの進展は明瞭には確認されなかっ た。また、ひび先端部の有意な硬化は確認されなかった。以上 より、ひびに対する地震の影響は極めて小さいと類推される。

なお、調査のために配管切り出しを行った箇所については、今後許認可 手続きを含めた準備を行い、新しい配管により復旧する。

	再循環系配管	炉心シュラウド
KK-1号機	欠陥を有する2継手に ついて、今後UTを実施予定	_ ^{**2}
KK-2号機		H6a溶接部のひび割れに ^{※2} ついて、今後UTを実施予定
KK-3号機	びび割れを有する1継手に ^{※1} ついて、UTを実施済	H6a溶接部のひび割れに ついて、UTを実施中
KK-5号機	ひび割れを有する1継手に ついて、UTを実施済	

※1: KK-3号機の再循環系配管については、今停止期間中に配管取替を計画的に実施 予定であったことから、あわせてサンプルを採取して調査を実施

※2: KK1/2号機の構造強度に影響しないと評価されているひび(上部格子板用ベース、 シュラウドヘッドボルトブラケット等)についても、知見収集のために抜き取り でUTを実施予定

平成20年4月30日 東京電力株式会社

当社原子力発電所における配管の構造強度評価結果の一部誤りに関する 再評価結果および原因と再発防止対策の概要

1. 経緯および指示文書への対応

- (1) 経 緯
 - 当社は、平成19年7月16日に発生した新潟県中越沖地震を踏まえ、柏崎刈羽原 子力発電所における各設備の点検・評価を実施しているが、同発電所7号機における 配管の構造強度評価結果の一部が誤っていることを確認した。
 - 構造強度評価結果が誤っていた原因は、解析を実施したメーカの計算機プログラムの一部に問題があったものである。このため、プログラムのデータ処理を修正したうえで、配管の構造強度を再評価した結果、誤りの影響は小さく、許容値を十分満足していることを確認した。
 - このたびの事象を踏まえ、本年4月10日、原子力安全・保安院から、当該メー カが過去に実施した構造強度評価に関して、問題のあった計算機プログラムの データ処理を修正したうえ、構造強度の再評価を実施し報告すること、ならび に根本的な原因究明と再発防止対策について併せて報告を求める旨の指示文書 を受領した。
- (2) 影響範囲
 - 今回の不適合事象に係る影響範囲は以下のとおりである。
 - ・昭和55年に旧告示501号が制定された以降のクラス1配管(旧告示第1種管)の分岐 部を含む応力評価

(旧告示制定により、クラス1配管(旧告示第1種管)の分岐部の応力算定につい、 て、モーメントの符号の扱いについて規定された。

・平成6年に旧告示501号が改正された以降のクラス2配管(旧告示第3種管)の分岐 部を含む応力評価

(旧告示改正により、クラス2配管(旧告示第3種管)の分岐部の応力算定について、モーメントの符号の扱いについて規定された。

- (3) 指示文書への対応
 - 原子力安全・保安院からの指示に基づき、当該メーカが上記影響範囲において
 実施した7プラントの構造強度評価における次の資料について、構造強度の再
 評価を実施した。
 - a. 工事計画書における配管分岐部の応力評価
 - b.「発電用原子炉施設に関する耐震設計審査指針」(平成18年9月19日改訂)等 の改訂に伴う耐震安全性評価結果中間報告書における配管分岐部の応力評価
 - c. 高経年化技術評価等報告書における配管分岐部の応力評価(平成20年5月30 日までに報告予定)
 - 根本的な原因究明を行い、再発防止対策の検討を実施した。

2. 再評価結果

再評価を実施した結果は、いずれも最大応力発生点における応力値が許容値を満足してお り、安全上の問題がないことを確認した。(別紙参照)

3. 原因

- (1) 当該メーカにおける調査結果
 - 昭和50年に現在の配管の応力評価を行う計算機プログラムが作られた。このプログラムは、複数の主プログラムとその主プログラム間のデータ授受のための補助プログラムから構成されている。(下図参照)
 - 昭和55年に旧告示501号が制定され、配管分岐部の評価式が新たに規定されたことから、主プログラムDの必要な改造を実施した。その際、同告示の規定を反映するために、補助プログラムCに符号を反転させる処理が必要であったが、処理されなかった。
 - 主プログラムDの改造後の検証作業においても、符号を反転させる処理が抜けている ことを確認できなかった。

- (2) 当社における調査結果
 - 昭和55年の計算機プログラムが改造された当時、当社は当該メーカに対して、現在行っているような、メーカに対する計算機プログラムの検証の要求や、その検証結果を確認する行為を行っていなかった。
 - その後、当社は、過去に経験した解析に係る不適合の対応として、解析業務の品質に 係るマニュアル等の整備を実施しており、解析メーカに対して、解析業務の管理に関 する要求を行い、解析実施毎に行う調査の中でそれらを確認している。
 - 柏崎刈羽原子力発電所7号機の設備健全性に係る配管の構造強度の解析においては、
 平成20年3月に当該メーカに対する解析実施状況調査を実施した。当該計算機プログラムについて、これまでの十分な実績を持って妥当としており、補助プログラムCの一部の誤りを確認できなかった。
- (3) 根本的な原因究明の結果
 - 当該メーカにおける以下の対応が不十分であった。
 - 計算機プログラム作成業務において、プログラム間の受け渡しデータの仕様(単位、 桁数、符号等)を明確にして、整合性を確認する具体的な要領が不明確であった。
 - 告示等の応力評価の考え方や計算式が変更された時の計算機プログラムに対する影響評価、検討が不十分であった。
 - プログラム検証において、プログラム間の受け渡しデータの整合性確認の方法・結果
 に対する検討が不十分であった。

4. 再発防止対策

- (1) 当該メーカにおける再発防止対策
 - 今後の計算機プログラムの作成・検証においては、「受け渡しデータの整合性チェックシート」を運用すること、プログラム間での入出力データを比較照合すること等の 具体的な要領を社内規定に定めて実施する。
 なお、今回の当該計算機プログラムで誤りのあった補助プログラムCについては、 受け渡しデータの整合性チェックシートにより、符号の反転処理以外に不整合がないことを確認するとともに、その他の主プログラムB、D、補助プログラムAに問 題のないことを確認した。
 - 平成11年以降、告示等が変更された時の計算機プログラムに対する影響評価、プロ グラム改造に伴う検証作業においては、専門的な知識を有する技術者による評価会議 にて検討することを、社内規定に定め運用するとともに、必要に応じて強化を行って きている。この仕組みを引き続き実施し、許認可解析の品質向上を図っていく。
- (2) 当社における再発防止対策
 - 現在の許認可に伴う解析においては、受注者に対して、発注仕様書の中で解析業務の 管理に関する要求を行い、解析実施状況調査によりその要求事項が正しく行われてい ることを確認することで、品質向上を図っており、引き続きこれらの活動を確実に実 施する。
 - 今後、当該メーカにおいて実施される上記の再発防止対策が適切に行われていること
 を確認していくことを当社マニュアルに定め、解析実施状況調査によりその実施状況
 を確認していく。
 - 今回の対応として、過去に作成・改造された計算機プログラムについては、十分な実績を持って妥当とし、メーカの検証内容を確認していなかったことから、当該メーカが作成・改造した許認可解析に用いている主プログラム及び補助プログラムについて、当該メーカが適切な方法で検証していることを確認した。また、今後、当該メーカ以外が作成・改造した計算機プログラムについても、適切な方法で検証されていることを確認していく。
- (3) 本不適合の情報共有
 - 本不適合については、原子力施設情報公開ライブラリー(NUCIA)に登録・公開し、産官学における情報共有を行う。
 - ・ 許認可解析においては、これまでも入力ミスやプログラム作成ミス等が確認される都度、改善を図っているが、今後も引き続き、信頼性の一層の向上に努めていくこととする。

以 上

配管の構造強度の再評価結果

(1) 福島第一原子力発電所1号機 工事計画書

	一次応力評価*2			一次応力+二次応力評価*3			疲労評価※4			
	(発生応力)				(発生応力)			(疲れ累積係数)		
	プログラム 修正前 (MPa)	プログラム 修正後 (MPa)	許容値 (MPa)	プログラム 修正前 (MPa)	プログラム 修正後 (MPa)	許容値 (MPa)	プログラム 修正前 (一)	プログラム 修正後 (一)	許容値 (-)	
「「「「「「「」」」」「「」」」「「」」」「「」」」「「」」」」	220	220	310	453	453	414	0.1637	0.1637	1	
尿丁炉丹循環ボ (クノヘエ)	113	113	235	452	452	414	0.0179	0.0179	1	
格納容器スプレイ冷却系 (クラス2)	27	27	154							
	24	47	154							
原子炉格納容器スプレイ系	36	36	154							
(クラス2)	40	40	154	*5						
原子炉停止時冷却系	41	51	154							
(クラス2)	42	45	154	1						
高圧注水系(クラス2)	63	63	183							

※1:個々の評価項目において最大値を示した評価点を記載している。 ※2:一次応力評価では、クラス1配管およびクラス2配管の配管分岐部の応力を算出する際に主管・分岐管のモーメントの符号を考慮して計算することが規定され ている。

※3:一次応力+二次応力評価では、クラス1配管の配管分岐部のみ応力を算出する際に主管・分岐管のモーメントの符号を考慮して計算することが規定されている。 クラス2配管の配管分岐部については、モーメントの符号を考慮することは要求されていない。

4

※4:一次応力+二次応力が許容値を超過した場合においても、疲労評価の結果が許容値を満足していれば、設備は健全である。

※5: クラス2配管においては、モーメントの符号を考慮することは要求されていないことから再評価対象外。

(2) 福島第一原子力発電所4号機 工事計画書

	一次応力評価**2			一次応	力+二次応力評	平価 ^{※3}	疲労評価**4				
系統	(発生応力)				(発生応力)		(疲れ累積係数)				
	プログラム 修正前 (MPa)	プログラム 修正後 (MPa)	許容値 (MPa)	プログラム 修正前 (MPa)	プログラム 修正後 (MPa)	許容値 (MPa)	プログラム 修正前 (一)	プログラム 修正後 (-)	許容値 (-)		
	96	99	235	248	248	357	0.0054	0.0054	1		
「	94	99	235	258	257	357	0.0057	0.0057	1		
原子炉隔離時冷却系 (クラス2)	29	29	154								
	44	44	154								
	20	20	154								
	22	22	154								
	71	95	150								
	45	63	150				* 5				
建叼熱除土亥 (カラマ9)	127	148	154								
	72	72	154								
	146	106	150								
	46	56	150								
「「「「」」「「」」「」」「「」」「「」」「」」「「」」「」」「」」「」」「」	26	34	150								
か心へノレイボ (クノベ乙)	36	51	150								

表2 福島第一原子力発電所4号機 配管の構造強度の再評価結果*1

※1:個々の評価項目において最大値を示した評価点を記載している。 ※2:一次応力評価では、クラス1配管およびクラス2配管の配管分岐部の応力を算出する際に主管・分岐管のモーメントの符号を考慮して計算することが規定され ている。

※3:一次応力+二次応力評価では、クラス1配管の配管分岐部のみ応力を算出する際に主管・分岐管のモーメントの符号を考慮して計算することが規定されている。 クラス2配管の配管分岐部については、モーメントの符号を考慮することは要求されていない。

※4:一次応力+二次応力が許容値を超過した場合においても、疲労評価の結果が許容値を満足していれば、設備は健全である。

※5:クラス2配管においては、モーメントの符号を考慮することは要求されていないことから再評価対象外。

(3) 福島第二原子力発電所2号機 工事計画書

	一次応力評価**2			一次応	力+二次応力	評価 ^{※3}	疲労評価*4				
不计	(発生応力)				(発生応力)		(疲れ累積係数)				
*/杭	プログラム 修正前 (MPa)	プログラム 修正後 (MPa)	許容値 (MPa)	プログラム 修正前 (MPa)	プログラム 修正後 (MPa)	許容値 (MPa)	プログラム 修正前 (-)	プログラム 修正後 (一)	許容値 (-)		
	99	110	260	467	467	354	0.0075	0.0103	1		
示]が骨帽操派(ノノハ1)	101	112	260	468	468	354	0.0080	0.0152	1		
原子炉隔離時冷却系	31	52	154								
(クラス2)	15	15	154								
	66	66	154								
	51	51	154								
建辺執险土玄 (カラス9)	58	57	154				× -				
	36	36	154		*5						
	53	59	150	1							
	68	68	150								
高圧炉心スプレイ系 (クラス2)	82	66	150								
低圧炉心スプレイ系 (クラス2)	44	72	189								

表3 福島第二原子力発電所2号機 配管の構造強度の再評価結果*1

※1:個々の評価項目において最大値を示した評価点を記載している。 ※2:一次応力評価では、クラス1配管およびクラス2配管の配管分岐部の応力を算出する際に主管・分岐管のモーメントの符号を考慮して計算することが規定され ている。

※3:一次応力+二次応力評価では、クラス1配管の配管分岐部のみ応力を算出する際に主管・分岐管のモーメントの符号を考慮して計算することが規定されている。 クラス2配管の配管分岐部については、モーメントの符号を考慮することは要求されていない。 ※4:一次応力+二次応力が許容値を超過した場合においても、疲労評価の結果が許容値を満足していれば、設備は健全である。 ※5:クラス2配管においては、モーメントの符号を考慮することは要求されていないことから再評価対象外。

(4) 福島第二原子力発電所4号機 工事計画書

	-	-次応力評価※	2	一次応	一次応力+二次応力評価*3			疲労評価*4			
To bet	(発生応力)				(発生応力)		(疲れ累積係数)				
<i>糸</i> 統	プログラム 修正前 (MPa)	プログラム 修正後 (MPa)	許容値 (MPa)	プログラム 修正前 (MPa)	プログラム 修正後 (MPa)	許容値 (MPa)	プログラム 修正前 (一)	プログラム 修正後 (一)	許容値 (-)		
	172	180	374	417	445	375	0.1417	0.2187	1		
	160	165	374	312	366	375	0.0406	0.0760	1		
主蒸気系(クラス1)	303	305	374	517	517	375	0.0626	0.1988	1		
	254	260	374	440	471	375	0.1901	0.3067	1		
	186	186	364	487	487	366	0.0500	0.0630	1		
公水茲 (カラフ1)	72	72	310	390	426	375	0.0646	0.0804	1		
和小ポ(シノヘエ)	72	72	310	390	426	375	0.0646	0.0804	1		
百二后再循環 (カラフ1)	70	89	260	201	275	354	0.0110	0.0110	1		
原丁炉丹旭垛ボ (クノハエ)	101	101	364	343	343	354	0.0146	0.0159	1		
原子炉隔離時冷却系 (クラス2)	27	57	154								
	64	64	154								
産の麹除土亥 (カラマ9)	57	57	154			_	※ 5				
	49	49	154								
	36	36	154								
高圧炉心スプレイ系 (クラス2)	66	66	150								

表4 福島第二原子力発電所4号機 配管の構造強度の再評価結果*1

※1:個々の評価項目において最大値を示した評価点を記載している。 ※2:一次応力評価では、クラス1配管およびクラス2配管の配管分岐部の応力を算出する際に主管・分岐管のモーメントの符号を考慮して計算することが規定され ている。

※3:一次応力+二次応力評価では、クラス1配管の配管分岐部のみ応力を算出する際に主管・分岐管のモーメントの符号を考慮して計算することが規定されている。 クラス2配管の配管分岐部については、モーメントの符号を考慮することは要求されていない。 ※4:一次応力+二次応力が許容値を超過した場合においても、疲労評価の結果が許容値を満足していれば、設備は健全である。 ※5:クラス2配管においては、モーメントの符号を考慮することは要求されていないことから再評価対象外。

(5) 柏崎刈羽原子力発電所4号機 工事計画書

	_	一次応力評価※	2	一次応	力+二次応力	評価 ^{※3}	疲労評価*4		
不住		(発生応力)			(発生応力)		(疲れ累積係数)		
<i>术</i> 杭	プログラム 修正前 (MPa)	プログラム 修正後 (MPa)	許容値 (MPa)	プログラム 修正前 (MPa)	プログラム 修正後 (MPa)	許容値 (MPa)	プログラム 修正前 (一)	プログラム 修正後 (一)	許容値 (-)
	135	140	281	385	399	375	0.0927	0.1833	1
 -	131	133	281	328	370	375	0.0467	0.0688	1
	145	146	281	362	402	375	0.0692	0.1968	1
	144	149	281	407	422	375	0.1438	0.1906	1
	81	81	310	549	589	375	0.2384	0.3267	1
	81	81	310	549	589	375	0.2384	0.3267	1
「「「「「「「」」」「「」」」「「」」「「」」「」」「「」」「」」「」」「」」	63	78	234	284	303	354	0.0146	0.0146	1
「「」「「竹帽珠木(シノヘ1)	169	169	364	518	518	366	0.0533	0.0740	1

表5 柏崎刈羽原子力発電所4号機 配管の構造強度の再評価結果*1

※1:個々の評価項目において最大値を示した評価点を記載している。

※2:一次応力評価では、クラス1配管およびクラス2配管の配管分岐部の応力を算出する際に主管・分岐管のモーメントの符号を考慮して計算することが規定されている。

※3:一次応力+二次応力評価では、クラス1配管の配管分岐部のみ応力を算出する際に主管・分岐管のモーメントの符号を考慮して計算することが規定されている。 クラス2配管の配管分岐部については、モーメントの符号を考慮することは要求されていない。

※4:一次応力+二次応力が許容値を超過した場合においても、疲労評価の結果が許容値を満足していれば、設備は健全である。

(6) 柏崎刈羽原子力発電所5号機 工事計画書

	一次応力評価*2			一次応	一次応力+二次応力評価*3			疲労評価**4			
不好	(発生応力)				(発生応力)		(疲れ累積係数)				
<i>****</i> ********************************	プログラム 修正前 (MPa)	プログラム 修正後 <u>(</u> MPa)	許容値 (MPa)	プログラム 修正前 (MPa)	プログラム 修正後 (MPa)	許容値 (MPa)	プログラム 修正前 <u>(</u> -)	プログラム 修正後 <u>(</u>)	許容値 (-)		
	150	155	374	395	419	375	0.1317	0.1945	1		
	167	169	374	382	411	375	0.1161	0.2657	1		
	265	268	374	449	479	375	0.3313	0.4296	1		
	150	154	374	375	394	375	0.0814	0.1358	1		
☆水衣 (カラス1)	82	82	310	507	546	375	0.1654	0.2377	1		
和小ホ(シノハエ)	82	82	310	507	546	375	0.1654	0.2377	1		
「「「「「「「」」」「「」」「「」」「「」」「」」「「」」「」」「」」「」」「	74	91	260	192	281	354	0.0341	0.0341	1		
	306	306	364	724	724	366	0.2012	0.2127	1		
低圧炉心スプレイ系 (クラス2)	82	82	150								
	99	110	150								
残留熱除去系(クラス2)	114	114	154			_	※ 5				
	51	51	150								
高圧炉心スプレイ系 (クラス2)	144	144	150								

表6 柏崎刈羽原子力発電所5号機 配管の構造強度の再評価結果*1

※1:個々の評価項目において最大値を示した評価点を記載している。

※2:一次応力評価では、クラス1配管およびクラス2配管の配管分岐部の応力を算出する際に主管・分岐管のモーメントの符号を考慮して計算することが規定されている。

※3:一次応力+二次応力評価では、クラス1配管の配管分岐部のみ応力を算出する際に主管・分岐管のモーメントの符号を考慮して計算することが規定されている。 クラス2配管の配管分岐部については、モーメントの符号を考慮することは要求されていない。

※4:一次応力+二次応力が許容値を超過した場合においても、疲労評価の結果が許容値を満足していれば、設備は健全である。

※5: クラス2配管においては、モーメントの符号を考慮することは要求されていないことから再評価対象外。

(7) 柏崎刈羽原子力発電所7号機 工事計画書

	一次応力評価*2			一次応	一次応力+二次応力評価*3			疲労評価*4			
不住		(発生応力)			(発生応力)		(疲れ累積係数)				
*統	プログラム 修正前 (MPa)	プログラム 修正後 (MPa)	許容値 (MPa)	プログラム 修正前 (MPa)	プログラム 修正後 (MPa)	許容値 (MPa)	プログラム 修正前 (-)	プログラム 修正後 (-)	許容値 (-)		
	206	209	374	414	468	375	0.0583	0.1849	1		
	309	311	374	549	549	375	0.1268	0.1984	1		
	201	203	374	400	452	375	0.0543	0.1478	1		
	201	203	374	400	455	375	0.0561	0.1667	1		
残留熱除去系(クラス1)	155	196	364	531	531	366	0.0712	0.0712	1		
谷水ズ (カラマ1)	73	101	374	366	348	375	0.0920	0.0869	1		
	79	109	374	351	335	375	0.0735	0.0710	1		
ほろ酸水注入 亥(カラフ1)	56	55	187	169	200	282	0.0005	0.0007	1		
はり下小住八米(クラス1)	40	40	187	98	137	282	0.0003	0.0003	1		

表7 柏崎刈羽原子力発電所7号機 配管の構造強度の再評価結果*1

※1:個々の評価項目において最大値を示した評価点を記載している。

※2:一次応力評価では、クラス1配管およびクラス2配管の配管分岐部の応力を算出する際に主管・分岐管のモーメントの符号を考慮して計算することが規定され ている。

※3:一次応力+二次応力評価では、クラス1配管の配管分岐部のみ応力を算出する際に主管・分岐管のモーメントの符号を考慮して計算することが規定されている。 クラス2配管の配管分岐部については、モーメントの符号を考慮することは要求されていない。 ※4:一次応力+二次応力が許容値を超過した場合においても、疲労評価の結果が許容値を満足していれば、設備は健全である。

(8) 福島第二原子力発電所4号機 耐震安全性評価結果中間報告書

系統		一次応力評価*1			一次,	芯力+二次応力	」評価	疲労評価		
	- to the	(発生応力)			(発生応力)			(疲れ累積係数)		
	プログラム 修正前 (MPa)	プログラム 修正後 (MPa)	許容値 (MPa)	プログラム 修正前 (MPa)	プログラム 修正後 (MPa)	許容値 (MPa)	プログラム 修正前 (一)	プログラム 修正後 (-)	許容値 (-)	
	主蒸気系(クラス1)	157	157	309	_ * 2					

表8 福島第二原子力発電所4号機 耐震安全性評価結果中間報告書

※1:一次応力評価では、クラス1配管およびクラス2配管の配管分岐部の応力を算出する際に主管・分岐管のモーメントの符号を考慮して計算することが規 定されている。

※2:耐震安全性評価においては、一次応力評価のみを実施している。

<応力評価について>

一次応力:内圧等により機器・配管等に加わる荷重によって発生する応力。過大な一次応力が発生すると延性破壊を引き起こす恐れがある。

二次応力:材料が熱膨張しようとする際に支持金具で拘束されることによって生じる応力のように、自由な変形が拘束されることにより生じる 応力。二次応力は、発生した応力により変形や歪みが生じるとその応力が低減することから、二次応力のみによって機器が延性破壊

を起こすことはないが、一次応力に加えて二次応力が繰り返して発生する場合には、疲労破壊を引き起こす恐れがある。

疲労評価:二次応力による疲労破壊防止のため、規格に基づいた疲労解析を用いた疲労評価を行うことが定められている。疲労評価は、作用す る応力の繰り返し回数と許容繰り返し回数との比を運転条件毎に加え、その総和(疲労累積係数)を確認する。