柏崎刈羽原子力発電所1号機 建物・構築物の耐震安全性評価について

(指摘事項に関する回答)

平成22年3月8日

東京電力株式会社

○ コメント内容

耐震要素として補助壁を考慮していないが、考慮した場合の影響を検討すること。(平成 21 年 12 月 24 日 耐震・構造設計小委員会 構造WG(第 44 回))

○ 回答

1. はじめに

補助壁(補助壁の評価については P17~21 の参考資料を参照)の有無が耐震安全 性評価に与える影響を検討するために、原子炉建屋の耐震要素として補助壁を考慮 した場合の地震応答解析を実施し、補助壁を考慮しなかった場合の応答結果との比 較を行う。

2. 検討ケース

検討ケースを表-1に示す。検討に用いる地震動は建屋応答に支配的な Ss-1 及び Ss-2 とし、水平2 方向(NS 方向と EW 方向)に対して影響検討を行う。

検討ケース	補助壁
CASE1	無視
CASE2	考慮

表-1 検討ケース

2. 検討結果

基準地震動 Ss-1 に対する最大応答加速度の比較を図-1、最大応答せん断力の比較を図-2 に、各部材のせん断スケルトン曲線上の最大応答値の比較を図-3~図-4 に示す。同様に、基準地震動 Ss-2 に対する最大応答加速度の比較を図-5、最大応答せん断力の比較を図-6 に、各部材のせん断スケルトン曲線上の最大応答値の比較を図-7~図-8 に示す。

以上より、補助壁の有無によらず、最大応答加速度及び最大応答せん断力は概ね 同等となることが示された。また、補助壁を考慮することで、せん断スケルトン曲 線上の最大応答値のうち、最大応答せん断ひずみは若干小さくなる傾向も観察でき る。

燃料取替床、中間階および原子炉基礎における床応答スペクトルを図-9~図-11

1

に示す。基準地震動 Ss-1 および基準地震動 Ss-2 に補助壁を考慮した場合のスペクトルは、従来の機器等の評価用スペクトル (Ss-1~5 包絡, JEAG4601-1987 に従い、地盤物性や建屋剛性等の変動を考慮するために周期軸方向に±10%拡幅) にほぼ包絡されることを確認した。なお、図-11 の固有周期 0.3~0.4 秒付近において、補助壁を考慮したスペクトルが評価用スペクトルを一部上回る箇所が存在するが、この周期帯に固有周期を持つ機器は存在しないことから、耐震安全性評価への影響は無い。

図-1 最大応答加速度の比較(Ss-1)

図-2 最大応答せん断力の比較 (Ss-1)

図-3(a) せん断スケルトン曲線状の最大応答値の比較(Ss-1, NS 方向, CRF, 3F)

図-3(b) せん断スケルトン曲線状の最大応答値の比較(Ss-1, NS 方向, 2F,1F)

図-3(c) せん断スケルトン曲線状の最大応答値の比較(Ss-1, NS 方向, B1F, B2F)

図-3(d) せん断スケルトン曲線状の最大応答値の比較(Ss-1, NS 方向, B3F, B4F)

図-3(e) せん断スケルトン曲線状の最大応答値の比較(Ss-1, NS 方向, B5F)

図-4(a) せん断スケルトン曲線状の最大応答値の比較(Ss-1, EW 方向, CRF,3F)

図-4(b) せん断スケルトン曲線状の最大応答値の比較(Ss-1, EW 方向, 2F,1F)

図-4(c) せん断スケルトン曲線状の最大応答値の比較(Ss-1, EW 方向, B1F, B2F)

図-4(d) せん断スケルトン曲線状の最大応答値の比較(Ss-1, EW 方向, B3F, B4F)

図-4(e) せん断スケルトン曲線状の最大応答値の比較(Ss-1, EW 方向, B5F)

図-5 最大応答加速度の比較(Ss-2)

EW 方向

図-6 最大応答せん断力の比較(Ss-2)

図-7(a) せん断スケルトン曲線状の最大応答値の比較(Ss-2, NS 方向, CRF, 3F)

図-7(b) せん断スケルトン曲線状の最大応答値の比較(Ss-2, NS 方向, 2F, 1F)

図-7(c) せん断スケルトン曲線状の最大応答値の比較(Ss-2, NS 方向, B1F, B2F)

図-7(d) せん断スケルトン曲線状の最大応答値の比較(Ss-2, NS 方向, B3F, B4F)

図-7(e) せん断スケルトン曲線状の最大応答値の比較(Ss-2, NS 方向, B5F)

図-8(a) せん断スケルトン曲線状の最大応答値の比較(Ss-2, EW 方向, CRF, 3F)

図-8(b) せん断スケルトン曲線状の最大応答値の比較(Ss-2, EW 方向, 2F,1F)

図-8(c) せん断スケルトン曲線状の最大応答値の比較(Ss-2, EW 方向, B1F, B2F)

図-8(d) せん断スケルトン曲線状の最大応答値の比較(Ss-2, EW 方向, B3F, B4F)

図-8(e) せん断スケルトン曲線状の最大応答値の比較(Ss-2, EW 方向, B5F)

図-9 床応答スペクトルの比較 (T.M.S.L. 18.0m, 減衰 1.0%, 水平方向(NS, EW 包絡))

(T.M.S.L. 12.8m, 減衰 1.0%, 水平方向(NS, EW 包絡))

図-11 床応答スペクトルの比較 (T.M.S.L. ⁻32.5m,減衰 1.0%,水平方向(NS, EW 包絡))

参考資料 補助壁の評価について(1号機原子炉建屋)

(1) 耐震壁の規定と補助壁として考慮した壁の選定条件

原子力施設における耐震壁の一般的な規定としては、以下の参表-1 に示すと おりである。また、参表-2 に柏崎刈羽原子力発電所における耐震壁および補助 壁の選定条件を示す。

参表-1 日本建築学会RC-N規準*における耐震壁の規定(算定外の規定)

・ 壁厚 200mm以上、かつ、壁板の内法寸法の 1/30 以上
・ せん断補強筋は、0.25%以上(直交する2方向それぞれ)
(付帯ラーメンのない場合のせん断補強筋比は、壁筋の許容引張応力度に対するコン
クリートの許容せん断応力度との比以上を確保)
・ 壁筋は複筋配置とする
・ 壁筋はD13以上の異形鉄筋を用いる

- (壁の見付け面に対する間隔は300mm以下)
- ・開口補強筋はD13以上、かつ、壁筋と同径以上の異形鉄筋を用いる
- ・ 付帯ラーメンがある場合には、その柱・梁に適切な靱性を確保させる

*原子力施設鉄筋コンクリート構造計算規準・同解説(2005)

耐震壁	補助壁			
・壁の厚さは 300mm 以上、かつ壁の内法				
高さの 1/30 以上	同左			
・壁のせん断補強筋比は、直交する各方	・壁のせん断補強筋比は、直交する各方			
向に関し、それぞれ 0.6%以上	向に関し、それぞれ 0.25%以上			
・甘醂フラブから連結して立た上がって	・下階まで壁が連続している、もしくは			
・	床スラブを介して壁に生じるせん断			
くる性	力を下階の耐震壁に伝達できる壁			
・フレーム構面内(柱、梁間)の壁	・フレーム構面外でも上記を満たす壁			

参表-2 耐震壁とパラメータスタディで考慮した補助壁の選定条件

(2) 補助壁として考慮した壁の範囲

原子炉建屋の地震応答解析時に剛性を評価する範囲を以下に示す。

NS方向 EW方向 B5F(T.M.S.L.-32.5m ~ T.M.S.L.-25.1m)

NS方向 EW方向 B4F(T.M.S.L. -25.1m ~ T.M.S.L.-16.1m)

:耐震壁として評価する範囲(設計時と同じ)
 :補助壁として評価する範囲

参図-1(a) 耐震壁及び補助壁の範囲

NS方向 EW方向 B3F(T.M.S.L.-16.1m ~ T.M.S.L.-9.7m)

NS方向

EW方向

B2F (T. M. S. L. $-9.7m \sim T. M. S. L. -2.7m$)

□ :耐震壁として評価する範囲(設計時と同じ)
□ :補助壁として評価する範囲

参図-1(b) 耐震壁及び補助壁の範囲

NS方向 EW B1F(T. M. S. L. -2. 7m ~ T. M. S. L. +5. 3m)

NS方向

EW方向

1F (T. M. S. L. +5. 3m \sim T. M. S. L. +12. 8m)

参図-1(c) 耐震壁及び補助壁の範囲

NS方向 EW力 2F(T.M.S.L.+12.8m ~ T.M.S.L. +18.0m)

参図-1(d) 耐震壁及び補助壁の範囲

○コメント内容

屋根トラスの応力比が最大で 0.98 となっており、余裕を示すという意味から、 他の部材の状況やこの部材が1を超えた場合でも架構全体として不安定になら ないことを確認したほうがよい。(平成 22 年 1 月 12 日 耐震・構造設計小委員 会構造WG(第 45 回))

○回答

1. はじめに

屋根トラスの耐震安全性に関する評価の考え方や応力比が最大となる部材の応 力状態を確認するとともに、屋根トラス全体の余裕に関して検討を実施した。なお、 当該部材を含む比較的余裕度が小さい部材の応力比が1を超えた場合の安全性につ いて確認した。

- 2. 基準地震動 Ss に対する評価の考え方
 - ・原子炉建屋の屋根トラスは、基準地震動 Ss に対する機能維持部位としての検討 を行い、崩壊しないこと等を確認することとしている。
 - ・しかしながら、基準地震動 Ss に対する耐震安全性評価においては、屋根トラス を構成する鉄骨部材が、概ね弾性範囲におさまっていることを確認している。
 - ・鉄骨部材の耐震安全性を判定する評価基準値としては、鋼材の許容応力度の基準値である F 値を 1.1 倍した値を採用している。なお、F 値とは、鋼材の許容応力度を決める際の基準値となる値であり、平成 12 年建設省告示第 2464 号によると、J I S 規格品の場合には、鋼材の降伏強度は F 値を 1.1 倍した値とすることができるものとされている。

図-1 鋼材の応力-ひずみ関係の例(SS400)

- 3. 基準地震動 Ss に対する評価結果
 - (1) 応力比が大きい部材の評価結果

基準地震動 Ss に対する評価結果としては、屋根トラスを構成する主トラス 部材のうち、応力比が最も大きい部位を示している。(図-2)

これによれば、最大応力比は、RF通りの斜材で発生し、値は0.98となる。

なお、屋根トラスを構成する接合部の耐力については、F 値を 1.1 倍した 母材の耐力を上回っている。

部材		発生応力 (N/mm ²)	評価基準値 (N/mm ²)	応力比	位置	使用部材	
トはお	(引張)	125.5	357	0.76	ILa	$\text{H-}428 \times 407 \times 20 \times 35$	
1.7247	(曲げ)	144.1	357	0.70	012		
下祛材	(圧縮)	186.7	328	0.90	D.	$H = 428 \times 407 \times 20 \times 35$	
T JAMI	(曲げ)	115.9	357	0.30	\mathcal{D}_1	11 420×407×20×33	
斜 材	(引張)	250.6	258	0.98	L_5	$2[s-250\times90\times9\times13]$	
束 材·	(圧縮)	237.5	346	0.05	V	$\mu_{-200} \times 200 \times 10 \times 15$	
	(曲げ)	92.6	357	0.95	*3	$11-300 \times 300 \times 10 \times 13$	

図-2 基準地震動 Ss に対する評価結果(RF 通り)

引張側の最大応力比 0.98 が発生した状態を、一般的な鋼材の応力--ひずみ関 係上に示すと図-3のようになる。これによれば、引張側の最大応力発生部材 は鋼材の降伏点に近いものの、耐力及び変形における余裕を有することが分か る。

なお、図-3には、圧縮側の最大応力比 0.95(曲げモーメントによる局部圧 縮を含む)が発生した状態についても示している。これによれば、圧縮側の最 大応力発生部材は鋼材の座屈耐力に近いものの、座屈耐力を超えた場合でも急 激に耐力が低下することはないものと考えられる。

これらのことから、応力比が仮に 1 を超えた場合でも、その直後に当該の部 材が破断や急激な耐力低下に至るわけではなく、直ちに架構として不安定にな ることはないものと判断できる。

図-3 一般的な鋼材の応力-ひずみ関係

(2) 屋根トラス全体の評価結果

RF通りを含む屋根トラス全体の評価結果(応力比)を図-4に示す。 これによれば、応力比が比較的大きい部位は、RF通りの中央部に集中している。

図-4 屋根トラス全体の評価結果

4. 屋根トラス全体の余裕について

基準地震動 Ss に対する評価結果では評価基準値を下回ることから屋根トラ スを構成する部材は弾性状態にあると考えられる。

ここでは、仮に一部の部材が降伏した状態を想定するために、上記の評価に おける屋根トラスの立体架構モデルに入力した地震動を 1.1 倍に増大させ、そ の際の応力比の確認及び屋根トラス全体の耐震安全性について検討を行う。

これにより、一部の部材の応力比が1を超えた場合でも、直ちに架構として 不安定にならないことを確認する。

入力した地震動を 1.1 倍にした場合の、屋根トラス全体の評価結果(応力比) を図-5に示す。一部部材が塑性化するものの、塑性化に伴って生じるトラス 架構の残留変形は、水平方向については、トラス上弦材端部で燃料取替床に対 して約 0.3mm(1/10000 以下)、鉛直方向については、トラス中央部で約 28.8mm

(地震前の長期荷重による弾性変形分 23mm を含んだ値)となる(図-6参照)。 以上のことから、仮に一部部材が塑性化した場合でも、直ちに架構として不安 定にならないものと考える。

図-5 屋根トラスの評価結果(1.1×基準地震動 Ss-1)

図-6 屋根トラスの RF 通りの変形図 (1.1×基準地震動 Ss-1)

(最大ひずみ発生部材)

○コメント内容

排気筒についても最大応力比が 0.94 となっており、評価基準値に近い値が出てい るので、総合的に検討すること。

(平成 22 年 1 月 12 日 耐震・構造設計小委員会 構造 WG (第 45 回))

○ 回 答

1. はじめに

排気筒の耐震安全性に関する評価の考え方を示すとともに、応力比が最大となる 部位及びその周辺部材の応力状態を確認し、排気筒全体の余裕に関して検討を実施 した。

2. 基準地震動 Ss に対する評価の考え方

- ・排気筒は、筒身内部に非常用ガス処理系(以下、SGTS という。)用排気筒を支 持することから、排気筒を構成する部材である鉄塔および筒身を基準地震動 Ss に対する機能維持部位として検討を行い、SGTS 用排気筒に有害な影響を与えな いことを確認することとしている。
- ・しかしながら、基準地震動 Ss に対する耐震安全性評価においては、排気筒を 構成する部材が、概ね弾性範囲に収まっていることを確認している。
- 3. 基準地震動 Ss に対する評価結果

表-1及び図-1に示すように、評価基準値に対する発生応力の比(以下、応力 比という)が最大となる部位として1号機筒身のT.M.S.L.+129.4m~121.0m 区間 (応力比:0.94)があげられる。

この部位は、T.M.S.L. +121.0 m 位置で筒身が鉄塔部に水平支持されている箇所 で、軸力(自重+地震時軸力)と地震時曲げモーメントを用いて断面検定をしてい るが、軸力の影響よりも曲げの影響が大きい部位となっており、軸力 $_{s}\sigma_{c}/_{s}f_{c}$ =0.02 に対して、曲げ $_{s}\sigma_{b}/_{s}f_{b}$ =0.92 となっている。

箇所	部材	N (kN)	M (kNm)	$\stackrel{A}{(\times 10^2 \text{mm}^2)}$	Z (×10 ³ mm ³)	$_{\rm s} \sigma_{\rm c}$ (N/mm ²)	$_{\rm s}^{\rm s} \sigma_{\rm b}$ (N/mm ²)	${}_{\rm s}{\rm f}_{\rm c}$ (N/mm ²)	sf _b (N/mm²)	$\frac{\frac{s\sigma_c}{sf_c} + \frac{s\sigma_b}{sf_b}}{sf_b}$
	既存主柱材	14289	505	645.0	17142	221.6	29.5	351	357	0.72
鉄塔	既存斜材	2296	—	86.30	733	266.1	—	335	—	0.80
	既存水平材	983	—	67.50	515	145.7	—	229	—	0.64
	追加柱材	1217	4	54.08	344	225.0	10.2	324	357	0.73
倍自	第1号機	535	24438	1191	125000	4.5	195.6	202	214	0.94
间内	第2号機	411	11078	750	64000	5.5	173.1	203	215	0.84
SGTS 用排	第1号機	279	2	94.0	920	29.7	2.2	204	235	0.16
気筒	第2号機	277	2	94.0	920	29.5	1.9	204	235	0.16

表-1 鉄塔部および筒身部における評価結果(最大応力比)

図-1 応力比が厳しい部位

4. 排気筒全体の余裕について

基準地震動 Ss に対する評価結果では評価基準値を下回ることから、排気筒を構成する部材は概ね弾性状態にあると考えられる。ここでは、念のため、最大の応力 比となる当該区間及び直上下区間の筒身・鉄塔部材の応力状態と当該筒身部分の応 力分布から、局部的な応力集中や座屈が進展するような状態にないことを確認する。

表-2(1)~表-2(3)に当該区間及び直上下区間の評価結果(応力比)を示 す。

これによれば、直上下区間に厳しい部材はなく、排気筒全体としては、それほど 大きな応力比となっておらず、耐震安全性は確保されている。

また、この筒身部は図-2に示すように、断面性能が等価となる線材に置換して 地震応答解析モデルに組み込んで求まった軸力Nと曲げモーメントMを用いて断面 検定(平面保持仮定)している。この場合の応力状態は図-3と図-4に示すよう に応力比が0.94(最大)となる部分は局部的であり、かつ、軸力は小さく曲げが支 配的であり、即座に座屈モードに至るような全面圧縮状態にはなく、筒身円周方向 にみれば十分余裕のある応力状態であることが確認できる。

以上より、筒身や鉄塔は全体として十分な余裕があり、局部的な応力集中や座屈 が進展するような状態ではなく、SGTS 用排気筒を支持する機能に影響は生じないと 考えられることから、排気筒全体の耐震安全性は確保されているものと判断できる。

	(H K. H									
箇所	部材	N (kN)	M (kNm)	$\stackrel{A}{(\times 10^2 \text{mm}^2)}$	Z (×10 ³ mm ³)	$_{\rm s} \sigma_{\rm c}$ (N/mm ²)	$_{\rm s} \sigma_{\rm b}$ (N/mm ²)	sfc (N/mm²)	sf _b (N/mm²)	$\frac{{}_{s}\sigma_{c}}{{}_{s}f_{c}} + \frac{{}_{s}\sigma_{b}}{{}_{s}f_{b}}$
	既存主柱材	2505.3	80.1	284.0	4499	88.3	17.9	339	357	0.32
姓扶	既存斜材	1233.8	-	86.3	733	143.0	_	297	-	0.49
此后	既存水平材	281.5	-	67.5	515	41.8	_	243	-	0.18
	追加柱材	-	-	-	-	_	_	-	-	_
笛身	1 号機	570.2	16980.6	1191.0	125000	4.8	135.9	202	214	0.66
问习	2 号機	423.3	7543.7	750.0	64000	5.7	117.9	203	215	0.58
SGTS	1 号機	53.8	16.7	94.0	920	5.8	18.2	215	235	0.11
用排 気筒	2 号機	53.8	18.0	94.0	920	5.8	19.6	215	235	0.12

表-2 (1) 鉄塔部および筒身部における評価結果 (直上区間・TMSL +137 0 m~TMSL +129 4 m)

表-2(2) 鉄塔部および筒身部における評価結果 (最大応力比発生区間:T.M.S.L.+129.4 m~T.M.S.L.+121.0 m)

箇所	部材	N (kN)	M (kNm)	${ m A}$ (×10 ² mm ²)	Z (×10 ³ mm ³)	$_{\rm s}^{\rm s} \sigma_{\rm c}^{\rm c}$ (N/mm ²)	$_{\rm s}^{\rm s} \sigma_{\rm b}^{\rm b}$ (N/mm ²)	$_{\rm s} {\rm f}_{\rm c}$ (N/mm ²)	$_{s}f_{b}$ (N/mm ²)	$\frac{s\sigma_c}{sf_c} + \frac{s\sigma_b}{sf_b}$
	既存主柱材	2502.5	107.0	284.0	4499	88.2	23.8	336	357	0.33
姓状	既存斜材	1287.9	-	86.3	733	149.3	_	283	-	0.53
<u></u> 坎哈	既存水平材	32.1	I	54.1	344	6.0	_	232	_	0.03
	追加柱材	-	-	-	-	-	-	-	-	-
答问	1 号機	535.4	24438.3	1191.0	125000	4.5	195.6	202	214	0.94
同分	2 号機	410.7	11078.3	750.0	64000	5.5	173.1	203	215	0.84
SGTS 用排 気筒	1 号機	53.8	16.7	94.0	920	5.8	18.2	215	235	0.11
	2 号機	53.8	18.0	94.0	920	5.8	19.6	215	235	0.12

表-2 (3) 鉄塔部および筒身部における評価結果 (直下区間: T. M. S. L. +121.0 m~T. M. S. L. +113.3 m)

箇所	部材	N (kN)	M (kNm)	$\stackrel{A}{(\times 10^2 \text{mm}^2)}$	$Z (\times 10^3 \text{mm}^3)$	$_{\rm s} \sigma_{\rm c}$ (N/mm ²)	$_{\rm s} \sigma_{\rm b}$ (N/mm ²)	sfc (N/mm²)	sf _b (N/mm²)	$\frac{s\sigma_c}{sf_c} + \frac{s\sigma_b}{sf_b}$
	既存主柱材	5120.5	138.3	284.0	4499	180.3	30.8	339	357	0.62
鉄塔	既存斜材	2226.0	-	86.3	733	258.0	-	337	-	0.77
277-1	既存水平材	210.6	-	67.5	515	31.2	-	183	-	0.18
	追加柱材	_	_	_	_	_	_	_	_	-
齿身	1 号機	789.4	24438.3	1324.0	139000	6.0	175.9	208	219	0.84
回习	2 号機	925.6	10824.1	965.0	82000	9.6	132.1	216	226	0.63
SGTS	1 号機	75.0	16.7	94.0	920	8.0	18.2	215	235	0.12
用排 気筒	2 号機	75.0	18.0	94.0	920	8.0	19.6	215	235	0.13

図-2 筒身の支持部とその解析上の梁モデルの概念図

図-3 組み合わせ応力分布の概念図

図-4 平面保持仮定で求めた断面検定時の応力分布と応力比

○ コメント内容

せん断断面積等でNSとEWで一部違いがあるので確認したい。 (平成 22 年 1 月 12 日 耐震・構造設計小委員会構造WG(第 45 回))

○ 回答

NS 方向と EW 方向の剛性を表-1 に比較して示す。このうち、せん断断面積の違いが比較的大きい階の代表として地上2階(T.M.S.L.+12.8~+18.0m,部材番号3)と地下4階(T.M.S.L.-25.1~-16.1m,部材番号8)を選定し、両階の平面図に剛性評価エリアを表示して、図-1~図-2に示す。

下記に、地上2階と地下4階において、NS方向とEW方向でせん断断面積が違っている理由を示す。

まず、地上2階のせん断断面積は、NS方向が 423m²、EW方向が 361m²となっており、NS 方向とEW方向で 60m²程度の差が生じている。

- この主な理由としては、以下の2点があげられる。
- ・内部ボックス壁における、NS方向の剛性評価エリアであるRC通りの壁厚*(1.6m)が 他の剛性評価エリア(いずれも1.0m)に比べ厚い。
- ・外部ボックス壁は壁厚及び長さともNS方向とEW方向で同一であるが、EW方向の 剛性評価エリアの開口部面積が、NS方向の剛性評価エリアの開口部面積より大きい。
- ※中央制御室を構成する壁の一部であり、遮蔽要求(要求壁厚 1.6m)により、壁厚が 決定されている部位である。

以上より、地上2階における NS 方向と EW 方向のせん断断面積の違いが生じており、 その結果、NS 方向のせん断断面積が大きくなっている。

次に、地下4階のせん断断面積は、NS方向が958m²、EW方向が907m²となっており、NS 方向とEW方向で50m²程度の差が生じている。

この主な理由としては、以下の2点があげられる。

- ・内部ボックス壁の壁厚(2.0m)は全て同じであるが、EW 方向の剛性評価エリアである R3 通り及び R9 通りの西側部分(RA~RB 通り間)に大きな開口が存在する。
- ・外部ボックス壁と内部ボックス壁を繋ぐ中間壁の壁厚(2.0m)は全て同じであるが、 前述と同様に、EW 方向の剛性評価エリアである R5 通り及び R7 通りの西側部分(RA ~RB 通り間)に大きな通路開口が存在する。

以上より、地下4階における NS 方向と EW 方向のせん断断面積の違いが生じており、

その結果、NS 方向のせん断断面積が大きくなっている。

			NS方向			EW方向		
T.M.S.L.(r	n)	部材 番号	せん断断面積 As(m ²)	断面 2 次モーメント IB(×103m4)	部材 番号	せん断断面積 As(m ²)	断面 2 次モーメント IB(×10 ³ m ⁴)	
36.0	¶ []							
24.5		1	48	31	1	58	43	
18.0	• 2	2	104	70	2	101	86	
(2F) _{2.8}	3	3	423	482	3	361	279	
5.3	4	4	399	438	4	367	260	
-2.7	5	5	439	525	5	459	564	
-9.7	6	6	611	685	6	620	686	
16.1	7	7	775	830	7	760	859	
(B4F)	8	8	958	973	8	907	998	
-32.5	9	9	1015	1087	9	1011	1119	
-40.0	10	10	7744	4997	10	7744	4997	

表-1 K1R/Bの地震応答解析モデルにおける NS 方向と EW 方向の剛性

図-1 各方向の剛性評価エリア 2F(T.M.S.L.+12.8~T.M.S.L.+18.0m)

図-2 各方向の剛性評価エリア B4F(T.M.S.L.-25.1~T.M.S.L.-16.1m)

○ コメント内容

地盤改良土の物性値の決め方について確認したい。

(平成 22 年 1 月 12 日 耐震・構造設計小委員会 構造WG(第 45 回))

- 回答
- (1) 物性値の設定の考え方について

既往文献等を参考に地盤改良後の目標物性値を設定し、さらに原位置における試験 施工後のチェック・ボーリング結果と照らし合わせて、設計に用いる地盤改良土の物 性値を設定している。各物性値の設定方針を以下に示す。

- せん断波速度 Vs
- ・ 地盤改良後のせん断波速度は原地盤の性状により異なるが、過去に火力発電所で実施した地盤改良において、施工目標を800m/s相当としていたことを参考にし、目標値を800 m/sと設定した。
- ・ 原位置試験施工後の確認試験では、せん断波速度の平均値が目標値である 800 m/s 以上であることを確認することとした。
- ② 単位体積重量(湿潤密度) γ
- 既往文献*1の「設計上は、改良による湿潤密度の増加を無視し、改良前後では対象土の湿潤密度は同じとすることが多い」という記述を参考にし、目標値を原地盤の単位体積重量と設定した。
- 原位置試験施工後の確認試験では、地盤改良土の単位体積重量の平均値と原地盤の
 単位体積重量とを比較し、両者の値に大きな違いがないことを確認した。
- ③ 動ポアソン比 v
- 既往の知見が少ないため、原位置試験施工後の確認試験での動ポアソン比の平均値 を用いることとした。
- ④ 動的歪み依存特性(G/G₀~ y、h~ y 関係)
- 既往の知見が少ないため、原位置試験施工後の確認試験での動的変形試験結果に基づく近似式を用いることとした。

以上の設定方針に従って設定した地盤改良土の物性値を表-1に示す。

*1:建築基礎のための地盤改良設計指針案 2006 制定 日本建築学会

調査項目	試験方法	試験結果の評価	試験結果	設定値
せん断波速度 Vs(m/s)	PS 検層	ボーリング孔を用いた PS 検層結果に基づくせん断波 速度の平均値が目標値の 800 m/s 以上であることを確 認した上で、800 m/s を用い る。	997	800
単位体積重量 γ(kN/m ³)	室 内 物理試験	ボーリングにより採取し た土質サンプルを用いた物 理試験結果の湿潤密度の平 均値が、原地盤の値と同程度 であることを確認した上で、 原地盤の値を用いる。	18. 3	18.6
動ポアソン比 v	PS 検層	ボーリング孔を用いた PS 検層結果に基づく動ポアソ ン比の平均値を用いる。	0.31	0. 31
動的 歪み依存特性 G/G ₀ ~γ関係 h~γ関係	動 的 変形試験	ボーリングにより採取し た土質サンプルを用いた動 的変形試験結果に基づく近 似式を用いる。	下図参照 (近似式設定)	下図参照

表-1 地盤改良土の物性値の設定値

(a) G/G₀~γ関係
 (b) h~γ関係
 図-2 動的歪み依存特性(試験結果と近似式)