	West Gate o	f Eukuchima	MP-1 of Fuki	ichima Daini			1
Place of Sampling	Daiich		(Refer				
Time of Sampling	Decembe 7:00-	•	Decembe 9:45-				 Density limit in the air to workers engaged in tasks associated with radiation
Detected Nuclides (Half-life)	density of sample (Bq/cm3)	Scaling Factor (/)	density of sample (Bq/cm3)	Scaling Factor (/)	density of sample (Bq/cm3)	Scaling Factor (/)	(Bq/cm3) *
I-131 (about 8 days)	ND	-	ND	-			1E-03
Cs-134 (about 2 years)	ND	-	ND	-			2E-03
Cs-137 (about 30 years)	ND	-	ND	-			3E-03
Nb-95 (approx.35days)	ND	-	ND	-			2E-02
Tc-99m (approx.6hrs)	ND	ı	ND	-			7E-01
Ag-110m (approx.250days)	ND	ı	ND	-			3E-03
129(approx.70mins	ND	-	ND	-			4E-01
Te-129m (approx.34days)	ND	-	ND	-			4E-03
I-132(approx.2hrs)	ND	-	ND	-			7E-02
Te-132 (approx.78hrs)	ND	-	ND	-			4E-03
I- 133(approx.21hrs)	ND	-	ND	-			5E-03
Cs-136 (approx.13days)	ND	-	ND	-			1E-02
Ba-140 (approx.13days)	ND	-	ND	-			1E-02
La-140 (approx.40hrs)	ND	-	ND	-			1E-02

^{*} The value of radioactivity density is the sum of the value of volatile nuclide's density and the value of particulate nuclide's density.

^{*} O.OE - O means O.O x 10-O

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{*} When the radioactivity density is below the detection limit, it shows "ND" which means "Not Detectable". The detection limits of major three nuclide that are not detected at west gate of Fukushima Daiichi NPP are as follows:

Volatile: I-131: approx. 1E-7Bq/cm3, Cs-134: approx. 2E-7Bq/cm3, Cs-137: approx. 2E-7Bq/cm3

The detection limits of three major nuclide that are not detected at MP-1 of Fukushima Daini NPP are as follows:

Volatile: I-131: approx. 2E-6Bq/cm3, Cs-134: approx. 3E-6Bq/cm3, Cs-137: approx. 3E-6Bq/cm3

Particulate: I-131: approx. 9E-7Bq/cm3, Cs-134: approx. 2E-6Bg/cm3, Cs-137: approx. 2E-6Bg/cm3

Volatile: I-131: approx. 9E-7Bq/cm3, Cs-134: approx. 2E-6Bg/cm3

Particulate: I-131: approx. 9E-7Bq/cm3, Cs-134: approx. 2E-6Bg/cm3

Place of Sampling	North Side Fukushima D	e Slope of aiichi Unit 1		e Slope of ilichi Unit 1 & 2	Fukushima Da	e Slope of iichi Unit 3 & 1		
Time of Sampling	Decembe 9:49-		December 1, 2011 9:56-14:56		December 10:04	· ·	Density limit in the air to workers engaged in tasks associated with radiation	
Detected Nuclides (Half-life)	density of sample (Bq/cm3)	Scaling Factor (/)	density of sample (Bq/cm3)	Scaling Factor (/)	density of sample (Bq/cm3)	Scaling Factor (/)	(Bq/cm3) *	
I-131 (about 8 days)	ND	-	ND	-	ND	-	1E-03	
Cs-134 (about 2 years)	ND	-	ND	-	ND	-	2E-03	
Cs-137 (about 30 years)	ND	-	ND	-	ND	-	3E-03	
Nb-95 (approx.35days)	ND	-	ND	-	ND	-	2E-02	
Tc-99m (approx.6hrs)	ND	-	ND	-	ND	-	7E-01	
Ag-110m (approx.250days)	ND	1	ND	-	ND	-	3E-03	
129(approx.70min	ND	-	ND	-	ND	-	4E-01	
Te-129m (approx.34days)	ND	-	ND	-	ND	-	4E-03	
I- 132(approx.2hrs)	ND	-	ND	-	ND	-	7E-02	
Te-132 (approx.78hrs)	ND	-	ND	-	ND	-	4E-03	
I- 133(approx.21hrs)	ND	-	ND	-	ND	-	5E-03	
Cs-136 (approx.13days)	ND	-	ND	-	ND	-	1E-02	
Ba-140 (approx.13days)	ND	-	ND	-	ND	-	1E-02	
La-140 (approx.40hrs)	ND	-	ND	-	ND	-	1E-02	

^{*} The value of radioactivity density is the sum of the value of volatile nuclide's density and the value of particulate nuclide's density.

The detection limits of major three nuclide that are not detected are as follows: Volatile: I-131: approx. 2E-6Bq/cm3, Cs-134: approx. 4E-6Bq/cm3, Cs-137: approx. 5E-6Bq/cm3 Particulate: I-131: approx. 9E-7Bq/cm3, Cs-134: approx. 3E-6Bq/cm3, Cs-137: approx. 3E-6Bq/cm3

^{*} O.OE - O means O.O x 10-O

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

	At the Surfa	ce of South	l					
Place of Sampling	seawall of Dai	Fukushima		Mega Float ushima Daiichi			Density limit in the air to	
Time of Sampling	Novembe (Not sa	mpled)	Novembe (Not sa	mpled)			workers engaged in tasks associated with radiation	
Detected Nuclides (Half-life)	density of sample (Bq/cm3)	Scaling Factor (/)	density of sample (Bq/cm3)	Scaling Factor (/)	density of sample (Bq/cm3)	Scaling Factor (/)	(Bq/cm3) *	
I-131 (about 8 days)	-	-	-	-			1E-03	
Cs-134 (about 2 years)	-	-	-	-			2E-03	
Cs-137 (about 30 years)	-	-	-	-			3E-03	
Nb-95 (approx.35days)	-	-	-	-			2E-02	
Tc-99m (approx.6hrs)	-	-	-	-			7E-01	
Ag-110m (approx.250days)	-	-	-	-			3E-03	
Te- 129(approx.70mins)	-	-	-	-			4E-01	
Te-129m (approx.34days)	-	-	-	-			4E-03	
I-132(approx.2hrs)	-	-	-	-			7E-02	
Te-132 (approx.78hrs)	-	-	-	-			4E-03	
I-133(approx.21hrs)	-	-	-	-			5E-03	
Cs-136 (approx.13days)	-	-	-	-			1E-02	
Ba-140 (approx.13days)	-	-	-	-			1E-02	
La-140 (approx.40hrs)	-	-	-	-			1E-02	

^{*} The value of radioactivity density is the sum of the value of volatile nuclide's density and the value of particulate nuclide's density.

^{*} O.OE - O means O.O x 10-O

Place of Sampling Time of Sampling	West Gate o Daiich Decembe	i NPS er 2, 2011	MP-1 of Fuki (Refer	rence) er 2, 2011			Density limit in the air to workers engaged in	
Detected Nuclides (Half-life)	7:00- density of sample (Bq/cm3)	Scaling Factor (/)	9:17- density of sample (Bq/cm3)	-9:27 Scaling Factor (/)	density of Scaling sample Factor (Bq/cm3) (/)		tasks associated with radiation (Bq/cm3) *	
I-131 (about 8 days)	ND	-	ND	-			1E-03	
Cs-134 (about 2 years)	ND	-	ND	-			2E-03	
Cs-137 (about 30 years)	ND	-	ND	-			3E-03	
Nb-95 (approx.35days)	ND	-	ND	1			2E-02	
Tc-99m (approx.6hrs)	ND	-	ND	-			7E-01	
Ag-110m (approx.250days)	ND	-	ND	-			3E-03	
129(approx.70mins	ND	-	ND	-			4E-01	
Te-129m (approx.34days)	ND	-	ND	-			4E-03	
I-132(approx.2hrs)	ND	-	ND	-			7E-02	
Te-132 (approx.78hrs)	ND	-	ND	-			4E-03	
I- 133(approx.21hrs)	ND	-	ND	-			5E-03	
Cs-136 (approx.13days)	ND	-	ND	-			1E-02	
Ba-140 (approx.13days)	ND	-	ND	-			1E-02	
La-140 (approx.40hrs)	ND	-	ND	-			1E-02	

^{*} The value of radioactivity density is the sum of the value of volatile nuclide's density and the value of particulate nuclide's * O.OE - O means O.O x 10-O

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{*} When the radioactivity density is below the detection limit, it shows "ND" which means "Not Detectable". The detection limits of major three nuclide that are not detected at west gate of Fukushima Daiichi NPP are as follows: Volatile: I-131: approx. 1E-7Bq/cm3, Cs-134: approx. 3E-7Bq/cm3, Cs-137: approx. 3E-7Bq/cm3 Particulate: I-131: approx. 6E-8Bq/cm3, Cs-134: approx. 2E-7Bq/cm3, Cs-137: approx. 2E-7Bq/cm3 Particulate: I-131: approx. 2E-6Bq/cm3, Cs-134: approx. 3E-6Bq/cm3, Cs-137: approx. 3E-6Bq/cm3

Particulate: I-131: approx. 9E-7Bq/cm3, Cs-134: approx. 2E-6Bq/cm3, Cs-137: approx. 2E-6Bq/cm3

Place of Sampling Time of Sampling	At the Surfa seawall of Dai Decembe	Fukushima ichi er 1, 2011	Decembe	Fukushima ichi er 1, 2011			Density limit in the air to workers engaged in tasks associated with	
Time of Gampling	19:00-		19:00-				radiation	
Detected Nuclides (Half-life)	density of sample (Bq/cm3)	Scaling Factor (/)	density of sample (Bq/cm3)	Scaling Factor (/)	density of sample (Bq/cm3)	Scaling Factor (/)	(Bq/cm3) *	
I-131 (about 8 days)	ND	-	ND	-			1E-03	
Cs-134 (about 2 years)	ND	-	ND	-			2E-03	
Cs-137 (about 30 years)	ND	-	ND	-			3E-03	
Nb-95 (approx.35days)	ND	1	ND	1			2E-02	
Tc-99m (approx.6hrs)	ND	1	ND	1			7E-01	
Ag-110m (approx.250days)	ND	-	ND	-			3E-03	
129(approx.70min	ND	-	ND	-			4E-01	
Te-129m (approx.34days)	ND	ı	ND	ı			4E-03	
I-132(approx.2hrs)	ND	-	ND	-			7E-02	
Te-132 (approx.78hrs)	ND	-	ND	-			4E-03	
I- 133(approx.21hrs)	ND	-	ND	-			5E-03	
Cs-136 (approx.13days)	ND	-	ND	-			1E-02	
Ba-140 (approx.13days)	ND	-	ND	-			1E-02	
La-140 (approx.40hrs)	ND	-	ND	-			1E-02	

^{*} The value of radioactivity density is the sum of the value of volatile nuclide's density and the value of particulate nuclide's density.

The detection limits of major three nuclide that are not detected are as follows: Volatile: I-131: approx. 2E-7Bq/cm3, Cs-134: approx. 4E-7Bq/cm3, Cs-137: approx. 5E-7Bq/cm3 Particulate: I-131: approx. 1E-7Bq/cm3, Cs-134: approx. 3E-7Bq/cm3, Cs-137: approx. 3E-7Bq/cm3

^{*} O.OE - O means O.O x 10-O

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

【Definite Report】 Nuclide Analysis Results of Radioactive Materials in the Air at the seaside in front of the site of Fukushima Daiiichi Nuclear Power Station

Place of Sampling	2km-3km offsh Fukushima D on the sea 1st s	aiichi	2km-3km offsh Fukushima D on the sea 2nd s	aiichi	2km-3km offsh Fukushima D on the sea 3rd s	aiichi	2km-3km offsh Fukushima D on the sea 4th s	aiichi	Density limit by the announcement of
Time of Sampling	December 1, 2011 (Not sampled)		December 1, 2011 (Not sampled)		December 1, 2011 (Not sampled)		December 1, 2011 (Not sampled)		Reactor Regulation (Bq/cm3) (Density limit in the air to which radiation workers breathe
Detected Nuclides (Half-life)	density of sample (Bq/cm3)	Scaling Factor (/)	density of sample (Bq/cm3)	Scaling Factor	density of sample (Bq/cm3)	Scaling Factor	density of sample (Bq/cm3)	Scaling Factor	in the section 4 of the appendix 2)
I-131 (about 8 days)	-	-	-	-	-	-	-	-	1E-03
Cs-134 (about 2 years)	-	-	-	-	-	-	-	-	2E-03
Cs-137 (about 30 years)	-	-	-	-	-	-	-	-	3E-03
Nb-95 (approx.35days)	-	-	-	-	-	-	-	-	2E-02
Tc-99m (approx.6hrs)	-	-	-	-	-	-	-	-	7E-01
Ag-110m (approx.250days)	-	-	-	-	-	-	-	-	3E-03
Te- 129(approx.70mins)	-	-	-	-	-	-	-	-	4E-01
Te-129m (approx.34days)	-	-	-	-	-	-	-	-	4E-03
I-132(approx.2hrs)	-	-	-	-	-	-	-	-	7E-02
Te-132 (approx.78hrs)	-	-	-	-	-	-	-	-	4E-03
I-133(approx.21hrs)	-	-	-	-	-	-	-	-	5E-03
Cs-136 (approx.13days)	-	-	-	-	-	-	-	-	1E-02
Ba-140 (approx.13days)	-	-	-	-	-	-	-	-	1E-02
La-140 (approx.40hrs)	-	-	-	-	-	-	-	-	1E-02

^{*} O.OE - O means O.O x 10-O

lace of Samplin	West Gate o Daiich		MP-1 of Fuki (Refei				
Time of Sampling	Decembe 7:00-	,	Decembe 9:03-				Density limit in the air to workers engaged in tasks
Detected Nuclides (Half-life)	density of sample (Bq/cm3)	Scaling Factor (/)	density of sample (Bq/cm3)	Scaling Factor (/)	density of sample (Bq/cm3)	Scaling Factor (/)	associated with radiation (Bq/cm3) *
I-131 (about 8 days)	ND	-	ND	-			1E-03
Cs-134 (about 2 years)	ND	-	ND	-			2E-03
(about 30	ND	-	ND	-			3E-03
(approx.35day	ND	-	ND	-			2E-02
Tc-99m (approx.6hrs)	ND	•	ND	-			7E-01
(approx.250da	ND	•	ND	-			3E-03
129(approx.70	ND	1	ND	1			4E-01
(approx.34day	ND	-	ND	-			4E-03
132(approx.2hr	ND	-	ND	-			7E-02
(approx.78hr	ND	-	ND	-			4E-03
133(approx.21	ND	-	ND	-			5E-03
(approx.13day	ND	-	ND	-			1E-02
(approx.13day	ND	-	ND	-			1E-02
La-140 (approx.40hrs)	ND	-	ND	-			1E-02

^{*} The value of radioactivity density is the sum of the value of volatile nuclide's density and the value of particulate nuclide's density.

^{*} O.OE - O means O.O x 10-O

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{*} When the radioactivity density is below the detection limit, it shows "ND" which means "Not Detectable". The detection limits of major three nuclide that are not detected at west gate of Fukushima Daiichi NPP are as follows: Volatile: I-131: approx. 1E-7Bq/cm3, Cs-134: approx. 3E-7Bq/cm3, Cs-137: approx. 3E-7Bq/cm3 Particulate: I-131: approx. 7E-8Bq/cm3, Cs-134: approx. 2E-7Bq/cm3, Cs-137: approx. 2E-7Bq/cm3 The detection limits of three major nuclide that are not detected at MP-1 of Fukushima Daini NPP are as follows: Volatile: I-131: approx. 2E-6Bq/cm3, Cs-134: approx. 3E-6Bq/cm3, Cs-137: approx. 3E-6Bq/cm3 Particulate: I-131: approx. 8E-7Bq/cm3, Cs-134: approx. 1E-6Bq/cm3, Cs-137: approx. 1E-6Bq/cm3

Place of Sampling	West Gate o Daiich Decembe	i NPS	MP-1 of Fuki (Refer	rence)			Density limit in the air to workers engaged in
Time of Sampling	7:00-		9:02-				tasks associated with
Detected Nuclides (Half-life)	density of sample (Bq/cm3)	Scaling Factor (/)	density of sample (Bq/cm3)	Scaling Factor (/)	density of sample (Bq/cm3)	Scaling Factor (/)	radiation (Bq/cm3) *
I-131 (about 8 days)	ND	-	ND	-			1E-03
Cs-134 (about 2 years)	ND	ı	ND	-			2E-03
Cs-137 (about 30 years)	ND	-	ND	-			3E-03
Nb-95 (approx.35days)	ND	-	ND	-			2E-02
Tc-99m (approx.6hrs)	ND	-	ND	-			7E-01
Ag-110m (approx.250days)	ND	-	ND	-			3E-03
129(approx.70mins	ND	-	ND	-			4E-01
Te-129m (approx.34days)	ND	-	ND	-			4E-03
I-132(approx.2hrs)	ND	-	ND	-			7E-02
Te-132 (approx.78hrs)	ND	-	ND	-			4E-03
I- 133(approx.21hrs)	ND	-	ND	-			5E-03
Cs-136 (approx.13days)	ND	-	ND	-			1E-02
Ba-140 (approx.13days)	ND	-	ND	-			1E-02
La-140 (approx.40hrs)	ND	-	ND	-			1E-02

^{*} The value of radioactivity density is the sum of the value of volatile nuclide's density and the value of particulate nuclide's density.

^{*} O.OE - O means O.O x 10-O

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{*} When the radioactivity density is below the detection limit, it shows "ND" which means "Not Detectable". The detection limits of major three nuclide that are not detected at west gate of Fukushima Daiichi NPP are as follows: Volatile: I-131: approx. 1E-7Bq/cm3, Cs-134: approx. 3E-7Bq/cm3, Cs-137: approx. 3E-7Bq/cm3 Particulate: I-131: approx. 6E-8Bq/cm3, Cs-134: approx. 2E-7Bq/cm3, Cs-137: approx. 3E-7Bq/cm3 The detection limits of three major nuclide that are not detected at MP-1 of Fukushima Daini NPP are as follows: Volatile: I-131: approx. 2E-6Bq/cm3, Cs-134: approx. 2E-6Bq/cm3, Cs-137: approx. 3E-6Bq/cm3 Particulate: I-131: approx. 1E-6Bq/cm3, Cs-134: approx. 2E-6Bq/cm3, Cs-137: approx. 2E-6Bq/cm3

Place of Sampling	West Gate o Daiich		MP-1 of Fuki (Refe				Density limit in
Time of Sampling	Decembe 7:00-		December 9:12-	•			the air to workers engaged in tasks associated with
Detected Nuclides (Half-life)	density of sample (Bq/cm3)	Scaling Factor (/)	density of sample (Bq/cm3)	Scaling Factor (/)	density of sample (Bq/cm3)	Scaling Factor (/)	radiation (Bq/cm3) *
I-131 (about 8 days)	ND	-	ND	-			1E-03
Cs-134 (about 2 years)	ND	-	ND	-			2E-03
Cs-137 (about 30 years)	ND	-	ND	-			3E-03
Nb-95 (approx.35days)	ND	-	ND	-			2E-02
Tc-99m (approx.6hrs)	ND	-	ND	-			7E-01
Ag-110m (approx.250days)	ND	-	ND	-			3E-03
Te- 129(approx.70mins)	ND	-	ND	-			4E-01
Te-129m (approx.34days)	ND	-	ND	-			4E-03
I-132(approx.2hrs)	ND	-	ND	-			7E-02
Te-132 (approx.78hrs)	ND	-	ND	-			4E-03
I-133(approx.21hrs)	ND	-	ND	-			5E-03
Cs-136 (approx.13days)	ND	-	ND	-			1E-02
Ba-140 (approx.13days)	ND	-	ND	-			1E-02
La-140 (approx.40hrs)	ND	-	ND	-			1E-02

^{*} The value of radioactivity density is the sum of the value of volatile nuclide's density and the value of particulate nuclide's density.

^{*} O.OE - O means O.O x 10-O

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{*} When the radioactivity density is below the detection limit, it shows "ND" which means "Not Detectable". The detection limits of major three nuclide that are not detected at west gate of Fukushima Daiichi NPP are as follows: Volatile: I-131: approx. 1E-7Bq/cm3, Cs-134: approx. 3E-7Bq/cm3, Cs-137: approx. 3E-7Bq/cm3 Particulate: I-131: approx. 6E-8Bq/cm3, Cs-134: approx. 2E-7Bq/cm3, Cs-137: approx. 2E-7Bq/cm3 The detection limits of three major nuclide that are not detected at MP-1 of Fukushima Daini NPP are as follows: Volatile: I-131: approx. 2E-6Bq/cm3, Cs-134: approx. 3E-6Bq/cm3, Cs-137: approx. 3E-6Bq/cm3 Particulate: I-131: approx. 1E-6Bq/cm3, Cs-134: approx. 2E-6Bq/cm3, Cs-137: approx. 2E-6Bq/cm3

Place of Sampling	West Gate o Daiich	i NPS		rence)			Density limit in	
Time of Sampling	Decembe 7:00-		Decembe 9:30-				the air to workers engaged in tasks	
Detected Nuclides (Half-life)	density of sample (Bq/cm3)	Scaling Factor (/)	density of sample (Bq/cm3)	Scaling Factor (/)	density of sample (Bq/cm3)	Scaling Factor (/)	associated with radiation (Bq/cm3) *	
I-131 (about 8 days)	ND	-	ND	-			1E-03	
Cs-134 (about 2 years)	ND	-	ND	-			2E-03	
Cs-137 (about 30 years)	ND	-	ND	-			3E-03	
Nb-95 (approx.35days)	ND	-	ND	-			2E-02	
Tc-99m (approx.6hrs)	ND	-	ND	-			7E-01	
Ag-110m (approx.250days)	ND	-	ND	-			3E-03	
Te- 129(approx.70mins)	ND	-	ND	-			4E-01	
Te-129m (approx.34days)	ND	-	ND	-			4E-03	
I-132(approx.2hrs)	ND	-	ND	-			7E-02	
Te-132 (approx.78hrs)	ND	-	ND	-			4E-03	
I-133(approx.21hrs)	ND	-	ND	-			5E-03	
Cs-136 (approx.13days)	ND	-	ND	-			1E-02	
Ba-140 (approx.13days)	ND	-	ND	-			1E-02	
La-140 (approx.40hrs)	ND	-	ND	-			1E-02	

^{*} The value of radioactivity density is the sum of the value of volatile nuclide's density and the value of particulate nuclide's density.

^{*} O.OE - O means O.O x 10-O

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1

^{*} When the radioactivity density is below the detection limit, it shows "ND" which means "Not Detectable". The detection limits of major three nuclide that are not detected at west gate of Fukushima Daiichi NPP are as follows: Volatile: I-131: approx. 1E-7Bq/cm3, Cs-134: approx. 3E-7Bq/cm3, Cs-137: approx. 3E-7Bq/cm3 Particulate: I-131: approx. 6E-8Bq/cm3, Cs-134: approx. 2E-7Bq/cm3, Cs-137: approx. 2E-7Bq/cm3 The detection limits of three major nuclide that are not detected at MP-1 of Fukushima Daini NPP are as follows: Volatile: I-131: approx. 2E-6Bq/cm3, Cs-134: approx. 3E-6Bq/cm3, Cs-137: approx. 3E-6Bq/cm3 Particulate: I-131: approx. 9E-7Bq/cm3, Cs-134: approx. 2E-6Bq/cm3, Cs-137: approx. 2E-6Bq/cm3

Place of Sampling	Fukushima I	Daiichi MP-1	Fukushima [Daiichi MP-3	Fukushima [Daiichi MP-8	Density limit in the	
Time of Sampling		er 6, 2011 -15:10	December 10:54-		December 10:36-		air to workers engaged in tasks associated with	
Detected Nuclides (Half-life)	density of sample (Bq/cm3)	Scaling Factor (/)	density of sample (Bq/cm3)	Scaling Factor (/)	density of sample (Bq/cm3)	Scaling Factor (/)	radiation (Bq/cm3) *	
I-131 (about 8 days)	ND	-	ND	-	ND	-	1E-03	
Cs-134 (about 2 years)	ND	-	ND	-	4.0E-07	0.00	2E-03	
Cs-137 (about 30 years)	ND	-	ND	-	4.4E-07	0.00	3E-03	
Nb-95 (approx.35days)	ND	-	ND	-	ND	-	2E-02	
Tc-99m (approx.6hrs)	ND	-	ND	-	ND	-	7E-01	
Ag-110m (approx.250days)	ND	-	ND	1	ND	1	3E-03	
Te- 129(approx.70mins)	ND	-	ND	1	ND	1	4E-01	
Te-129m (approx.34days)	ND	-	ND	-	ND	-	4E-03	
I-132(approx.2hrs)	ND	-	ND	-	ND	-	7E-02	
Te-132 (approx.78hrs)	ND	-	ND	ı	ND	-	4E-03	
I-133(approx.21hrs)	ND	-	ND	-	ND	-	5E-03	
Cs-136 (approx.13days)	ND	-	ND	-	ND	-	1E-02	
Ba-140 (approx.13days)	ND	-	ND	-	ND	-	1E-02	
La-140 (approx.40hrs)	ND	-	ND	-	ND	-	1E-02	

^{*} The value of radioactivity density is the sum of the value of volatile nuclide's density and the value of particulate nuclide's density.

The detection limits of major three nuclide that are not detected are as follows: Volatile: I-131: approx. 2E-7Bq/cm3, Cs-134: approx. 4E-7Bq/cm3, Cs-137: approx. 5E-7Bq/cm3 Particulate: I-131: approx. 9E-8Bq/cm3, Cs-134: approx. 3E-7Bq/cm3, Cs-137: approx. 3E-7Bq/cm3

^{*} O.OE - O means O.O x 10-O

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

【Definite Report】 Nuclide Analysis Results of Radioactive Materials in the Air at the seaside in front of the site of Fukushima Daiiichi Nuclear Power Station

Place of Sampling	2km-3km offshore of Fukushima Daiichi on the sea 1st sampling		2km-3km offshore of Fukushima Daiichi on the sea 2nd sampling		2km-3km offsh Fukushima D on the sea 3rd s	aiichi	2km-3km offsh Fukushima D on the sea 4th s	aiichi	Density limit by the announcement of	
Time of Sampling	December 5, 2011 8:15-8:45		December 5, 2011 8:46-9:16		· ·	December 5, 2011 9:17-9:47		2011 8	Reactor Regulation (Bq/cm3) (Density limit in the air to which radiation workers breathe	
Detected Nuclides (Half-life)	density of sample (Bq/cm3)	Scaling Factor	density of sample (Bq/cm3)	Scaling Factor	density of sample (Bq/cm3)	Scaling Factor	density of sample (Bq/cm3)	Scaling Factor	in the section 4 of the appendix 2)	
I-131 (about 8 days)	ND	-	ND	-	ND	-	ND	-	1E-03	
Cs-134 (about 2 years)	ND	-	ND	-	ND	-	ND	-	2E-03	
Cs-137 (about 30 years)	ND	-	ND	-	ND	-	ND	-	3E-03	
Nb-95 (approx.35days)	ND	-	ND	-	ND	-	ND	-	2E-02	
Tc-99m (approx.6hrs)	ND	-	ND	-	ND	-	ND	-	7E-01	
Ag-110m (approx.250days)	ND	-	ND	-	ND	-	ND	-	3E-03	
Te- 129(approx.70mins)	ND	-	ND	-	ND	-	ND	-	4E-01	
Te-129m (approx.34days)	ND	-	ND	-	ND	-	ND	-	4E-03	
I-132(approx.2hrs)	ND	-	ND	-	ND	-	ND	-	7E-02	
Te-132 (approx.78hrs)	ND	-	ND	-	ND	-	ND	-	4E-03	
I-133(approx.21hrs)	ND	-	ND	-	ND	-	ND	-	5E-03	
Cs-136 (approx.13days)	ND	-	ND	-	ND	-	ND	-	1E-02	
Ba-140 (approx.13days)	ND	-	ND	-	ND	-	ND	-	1E-02	
La-140 (approx.40hrs)	ND	-	ND	-	ND	-	ND	-	1E-02	

^{*} O.OE - O means O.O x 10-O

The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 3E-8Bq/cm3, Cs-134: approx. 4E-8Bq/cm3, Cs-137: approx. 4E-8Bq/cm3

Please note that these nuclides are sometimes detected even when they are below the limits, contingent on the detector or samples. This is the result of nuclides analysis for aerial radioactive particles

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

 $^{^{\}star}$ "ND" means the sampled data is below measurable limit.

DI (0 II	West Gate o	f Fukushima	MP-1 of Fuki	ushima Daini			
Place of Sampling	Daiich	ni NPS	(Refer	rence)			Demokratika ika dhe ela te
Time of Sampling	Decembe 7:00-		Decembe 9:29-				Density limit in the air to workers engaged in tasks
Detected Nuclides (Half-life)	density of sample (Bq/cm3)	Scaling Factor	density of sample (Bq/cm3)	Scaling Factor (/)	density of sample (Bq/cm3)	Scaling Factor (/)	associated with radiation (Bq/cm3)*
I-131 (about 8 days)	ND	-	ND	-			1E-03
Cs-134 (about 2 years)	ND	-	ND	-			2E-03
Cs-137 (about 30 years)	ND	-	ND	-			3E-03
Nb-95 (approx.35days)	ND	-	ND	-			2E-02
Tc-99m (approx.6hrs)	ND	-	ND	-			7E-01
Ag-110m (approx.250days)	ND	-	ND	-			3E-03
Sb-125 (approx.3yrs)	ND	-	ND	-			6E-03
Te- 129(approx.70mins)	ND	-	ND	-			4E-01
Te-129m (approx.34days)	ND	-	ND	-			4E-03
I-132(approx.2hrs)	ND	-	ND	-			7E-02
Te-132 (approx.78hrs)	ND	-	ND	-			4E-03
I-133(approx.21hrs)	ND	-	ND	-			5E-03
Cs-136 (approx.13days)	ND	-	ND	-			1E-02
Ba-140 (approx.13days)	ND	-	ND	-			1E-02
La-140 (approx.40hrs)	ND	-	ND	-			1E-02

^{*} The value of radioactivity density is the sum of the value of volatile nuclide's density and the value of particulate nuclide's density.

^{*} O.OE - O means O.O x 10-O

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{*} When the radioactivity density is below the detection limit, it shows "ND" which means "Not Detectable". The detection limits of major three nuclide that are not detected at west gate of Fukushima Daiichi NPP are as follows: Volatile: I-131: approx. 1E-7Bq/cm3, Cs-134: approx. 3E-7Bq/cm3, Cs-137: approx. 3E-7Bq/cm3 The detection limits of three major nuclide that are not detected at MP-1 of Fukushima Daini NPP are as follows: Volatile: I-131: approx. 2E-6Bq/cm3, Cs-137: approx. 3E-6Bq/cm3 Particulate: I-131: approx. 1E-6Bq/cm3, Cs-134: approx. 2E-6Bq/cm3, Cs-137: approx. 2E-6Bq/cm3

Place of Sampling	mountainside Fukushim			e of Unit 2 of na Daiichi	mountainside Fukushim		Density limit in
Time of Sampling	Decembe 9:41-	·	Decembe 9:44-		N/	/A	the air to workers engaged in tasks
Detected Nuclides (Half-life)	density of sample (Bq/cm3)	Scaling Factor (/)	density of sample (Bq/cm3)	Scaling Factor (/)	density of sample (Bq/cm3)	Scaling Factor (/)	associated with radiation (Bq/cm3) *
I-131 (about 8 days)	ND	-	ND	-	-	-	1E-03
Cs-134 (about 2 years)	ND	-	3.1E-06	0.00	-	-	2E-03
Cs-137 (about 30 years)	ND	-	3.7E-06	0.00	-	-	3E-03
Nb-95 (approx.35days)	ND	-	ND	-	-	-	2E-02
Tc-99m (approx.6hrs)	ND	-	ND	-	-	-	7E-01
Ag-110m (approx.250days)	ND	-	ND	-	-	-	3E-03
Sb-125 (approx.3yrs)	ND	-	ND	-	-	-	6E-03
Te-129(approx.70mins)	ND	-	ND	-	-	-	4E-01
Te-129m (approx.34days)	ND	-	ND	-	-	-	4E-03
I-132(approx.2hrs)	ND	-	ND	-	-	-	7E-02
Te-132 (approx.78hrs	ND	-	ND	-	-	-	4E-03
I-133(approx.21hrs)	ND	-	ND	-	-	-	5E-03
Cs-136 (approx.13days)	ND	-	ND	-	-	-	1E-02
Ba-140 (approx.13days)	ND	-	ND	-	-	-	1E-02
La-140 (approx.40hrs)	ND	-	ND	-	-	-	1E-02

^{*} The value of radioactivity density is the sum of the value of volatile nuclide's density and the value of particulate nuclide's density.

The detection limits of major three nuclide that are not detected are as follows: Volatile: I-131: approx. 2E-6Bq/cm3, Cs-134: approx. 4E-6Bq/cm3, Cs-137: approx. 5E-6Bq/cm3 Particulate: I-131: approx. 1E-6Bq/cm3, Cs-134: approx. 3E-6Bq/cm3, Cs-137: approx. 3E-6Bq/cm3

^{*} O.OE - O means O.O x 10-O

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

【Definite Report】 Nuclide Analysis Results of Radioactive Materials in the Air at the seaside in front of the site of Fukushima Daiiichi Nuclear Power Station

Place of Sampling	2km-3km offshore of Fukushima Daiichi on the sea 1st sampling		2km-3km offshore of Fukushima Daiichi on the sea 2nd sampling		Fukushima D	2km-3km offshore of Fukushima Daiichi on the sea 3rd sampling		nore of aiichi ampling	Density limit by the announcement of	
Time of Sampling	December 6, 2011 7:57-8:27		December 6, 2011 8:28-8:58		December 6, 8:58-9:28		December 6, 2011 9:29-9:59		Reactor Regulation (Bq/cm3) (Density limit in the air to which radiation workers breathe	
Detected Nuclides (Half-life)	density of sample (Bq/cm3)	Scaling Factor	density of sample (Bq/cm3)	Scaling Factor	density of sample (Bq/cm3)	sample Factor		Scaling Factor	in the section 4 of the appendix 2)	
I-131 (about 8 days)	ND	-	ND	-	ND	-	ND	-	1E-03	
Cs-134 (about 2 years)	5.8E-08	0.00	3.4E-07	0.00	8.8E-07	0.00	1.1E-06	0.00	2E-03	
Cs-137 (about 30 years)	9.4E-08	0.00	4.0E-07	0.00	1.2E-06	0.00	1.3E-06	0.00	3E-03	
Nb-95 (approx.35days)	ND	-	ND	-	ND	-	ND	-	2E-02	
Tc-99m (approx.6hrs)	ND	-	ND	-	ND	-	ND	-	7E-01	
Ag-110m (approx.250days)	ND	-	ND	-	ND	-	ND	-	3E-03	
Sb-125 (approx.3yrs)	ND	-	ND	-	ND	-	1.7E-07	0.00	6E-03	
Te- 129(approx.70mins)	ND	-	ND	-	ND	-	ND	-	4E-01	
Te-129m (approx.34days)	ND	-	ND	-	ND	-	ND	-	4E-03	
I-132(approx.2hrs)	ND	-	ND	-	ND	-	ND	-	7E-02	
Te-132 (approx.78hrs)	ND	-	ND	-	ND	-	ND	-	4E-03	
I-133(approx.21hrs)	ND	-	ND	-	ND	-	ND	-	5E-03	
Cs-136 (approx.13days)	ND	-	ND	-	ND	-	ND	-	1E-02	
Ba-140 (approx.13days)	ND	-	ND	-	ND	-	ND	-	1E-02	
La-140 (approx.40hrs)	ND	-	ND	-	ND	-	ND	-	1E-02	

^{*} O.OE - O means O.O x 10-O

Please note that these nuclides are sometimes detected even when they are below the limits, contingent on the detector or samples. result of nuclides analysis for aerial radioactive particles

This is the

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 5E-8Bq/cm3

Place of Sampling	West Gate o Daiich		MP-1 of Fuki (Refer				Density limit in the air
Time of Sampling	Decembe 7:00-		Decembe 9:15-				to workers engaged in tasks associated with
Detected Nuclides (Half-life)	density of sample (Bq/cm3)	Scaling Factor (/)	density of sample (Bq/cm3)	Scaling Factor (/)	density of sample (Bq/cm3)	Scaling Factor (/)	radiation (Bq/cm3) *
I-131 (about 8 days)	ND	-	ND	1			1E-03
Cs-134 (about 2 years)	ND	-	ND	-			2E-03
Cs-137 (about 30 years)	ND	-	ND	-			3E-03
Nb-95 (approx.35days)	ND	-	ND	-			2E-02
Tc-99m (approx.6hrs)	ND	-	ND	-			7E-01
Ag-110m (approx.250days)	ND	-	ND	-			3E-03
Sb-125 (approx.3yrs)	ND	-	ND	-			6E-03
129(approx.70mins	ND	-	ND	-			4E-01
Te-129m (approx.34days)	ND	-	ND	-			4E-03
I-132(approx.2hrs)	ND	-	ND	-			7E-02
Te-132 (approx.78hrs)	ND	-	ND	-			4E-03
I- 133(approx.21hrs)	ND	-	ND	-			5E-03
Cs-136 (approx.13days)	ND	-	ND	-			1E-02
Ba-140 (approx.13days)	ND	-	ND	-			1E-02
La-140 (approx.40hrs)	ND	-	ND	-			1E-02

^{*} The value of radioactivity density is the sum of the value of volatile nuclide's density and the value of particulate nuclide's density.

^{*} O.OE - O means O.O x 10-O

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{*} When the radioactivity density is below the detection limit, it shows "ND" which means "Not Detectable". The detection limits of major three nuclide that are not detected at west gate of Fukushima Daiichi NPP are as follows: Volatile: I-131: approx. 1E-7Bq/cm3, Cs-134: approx. 3E-7Bq/cm3, Cs-137: approx. 3E-7Bq/cm3 Particulate: I-131: approx. 7E-8Bq/cm3, Cs-134: approx. 2E-7Bq/cm3, Cs-137: approx. 3E-6Bq/cm3 Particulate: I-131: approx. 2E-6Bq/cm3, Cs-134: approx. 3E-6Bq/cm3, Cs-137: approx. 3E-6Bq/cm3

Particulate: I-131: approx. 8E-7Bq/cm3, Cs-134: approx. 2E-6Bq/cm3, Cs-137: approx. 2E-6Bq/cm3

Particulate: I-131: approx. 8E-7Bq/cm3, Cs-134: approx. 2E-6Bq/cm3, Cs-137: approx. 2E-6Bq/cm3

Place of Sampling	North Side Slope of Fukushima Daiichi Unit 1 West Side Slope of Fukushima Daiichi Unit 1 & Fukushima Daiichi Unit 3 & 4				iichi Unit 3 &	Density limit in	
Time of Sampling	December 9:50-	•	December 9:55-	er 8, 2011	December 10:01	the air to workers engaged in tasks associated with	
Detected Nuclides (Half-life)	density of sample (Bq/cm3)	Scaling Factor (/)	density of sample (Bq/cm3)	Scaling Factor (/)	density of sample (Bq/cm3)	Scaling Factor (/)	radiation (Bq/cm3) *
I-131 (about 8 days)	ND	-	ND	-	ND	-	1E-03
Cs-134 (about 2 years)	ND	-	ND	-	ND	-	2E-03
Cs-137 (about 30 years)	ND	-	ND	-	ND	-	3E-03
Nb-95 (approx.35days)	ND	-	ND	-	ND	-	2E-02
Tc-99m (approx.6hrs)	ND	-	ND	-	ND	-	7E-01
Ag-110m (approx.250days)	ND	-	ND	-	ND	-	3E-03
Sb-125 (approx.3yrs)	ND	-	ND	-	ND	-	6E-03
Te- 129(approx.70mins)	ND	-	ND	-	ND	-	4E-01
Te-129m (approx.34days)	ND	-	ND	-	ND	-	4E-03
I-132(approx.2hrs)	ND	-	ND	-	ND	-	7E-02
Te-132 (approx.78hrs)	ND	-	ND	-	ND	-	4E-03
I-133(approx.21hrs)	ND	-	ND	-	ND	-	5E-03
Cs-136 (approx.13days)	ND	-	ND	-	ND	-	1E-02
Ba-140 (approx.13days)	ND	-	ND	-	ND	-	1E-02
La-140 (approx.40hrs)	ND	-	ND	-	ND	-	1E-02

^{*} The value of radioactivity density is the sum of the value of volatile nuclide's density and the value of particulate nuclide's density.

The detection limits of major three nuclide that are not detected are as follows: Volatile: I-131: approx. 2E-6Bq/cm3, Cs-134: approx. 4E-6Bq/cm3, Cs-137: approx. 5E-6Bq/cm3 Particulate: I-131: approx. 1E-6Bq/cm3, Cs-134: approx. 3E-6Bq/cm3, Cs-137: approx. 3E-6Bq/cm3

^{*} O.OE - O means O.O x 10-O

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

Place of Sampling	mountainside Fukushim			e of Unit 2 of na Daiichi	mountainside Fukushim		Density limit in	
Time of Sampling	N	/A	N.	/A	December 10:32-		the air to workers engaged in tasks associated with	
Detected Nuclides (Half-life)	density of sample (Bq/cm3)	Scaling Factor (/)	density of sample (Bq/cm3)	Scaling Factor (/)	density of sample (Bq/cm3)	Scaling Factor (/)	radiation (Bq/cm3) *	
I-131 (about 8 days)	-	-	-	-	ND	ı	1E-03	
Cs-134 (about 2 years)	-	-	-	-	ND	1	2E-03	
Cs-137 (about 30 years)	-	-	-	-	ND	-	3E-03	
Nb-95 (approx.35days)	-	-	-	-	ND	-	2E-02	
Tc-99m (approx.6hrs)	-	-	-	-	ND	-	7E-01	
Ag-110m (approx.250days)	-	-	-	-	ND	-	3E-03	
Sb-125 (approx.3yrs)	-	-	-	-	ND	-	6E-03	
Te-129(approx.70mins)	-	-	-	-	ND	-	4E-01	
Te-129m (approx.34days)	-	-	-	-	ND	-	4E-03	
I-132(approx.2hrs)	-	-	-	-	ND	-	7E-02	
Te-132 (approx.78hrs	-	-	-	-	ND	-	4E-03	
I-133(approx.21hrs)	-	-	-	-	ND	-	5E-03	
Cs-136 (approx.13days)	-	-	-	-	ND	-	1E-02	
Ba-140 (approx.13days)	-	-	-	-	ND	-	1E-02	
La-140 (approx.40hrs)	-	-	-	-	ND	-	1E-02	

^{*} The value of radioactivity density is the sum of the value of volatile nuclide's density and the value of particulate nuclide's density.

The detection limits of major three nuclide that are not detected are as follows: Volatile: I-131: approx. 2E-6Bq/cm3, Cs-134: approx. 4E-6Bq/cm3, Cs-137: approx. 5E-6Bq/cm3 Particulate: I-131: approx. 1E-6Bq/cm3, Cs-134: approx. 3E-6Bq/cm3, Cs-137: approx. 3E-6Bq/cm3

^{*} O.OE - O means O.O x 10-O

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

Place of Sampling	Fukushima Daiichi, Unit 1-4 at the seaside of the sites						Density limit in the air to workers
Time of Sampling	December 8, 2011 10:13-15:13						engaged in tasks associated with
Detected Nuclides (Half-life)	density of sample (Bq/cm3)	Scaling Factor (/)	density of sample (Bq/cm3)	Scaling Factor (/)	density of sample (Bq/cm3)	Scaling Factor (/)	radiation (Bq/cm3) *
I-131 (about 8 days)	ND	-					1E-03
Cs-134 (about 2 years)	ND	-					2E-03
Cs-137 (about 30 years)	ND	-					3E-03
Nb-95 (approx.35days)	ND	-					2E-02
Tc-99m (approx.6hrs)	ND	-					7E-01
Ag-110m (approx.250days)	ND	-					3E-03
Sb-125 (approx.3yrs)	ND	-					6E-03
Te-129(approx.70mins)	ND	-					4E-01
Te-129m (approx.34days)	ND	-					4E-03
I-132(approx.2hrs)	ND	-					7E-02
Te-132 (approx.78hrs)	ND	-					4E-03
I-133(approx.21hrs)	ND	-					5E-03
Cs-136 (approx.13days)	ND	-					1E-02
Ba-140 (approx.13days)	ND	-					1E-02
La-140 (approx.40hrs)	ND	-					1E-02

^{*} The value of radioactivity density is the sum of the value of volatile nuclide's density and the value of particulate nuclide's density.

The detection limits of major three nuclide that are not detected are as follows: Volatile: I-131: approx. 2E-7Bq/cm3, Cs-134: approx. 4E-7Bq/cm3, Cs-137: approx. 5E-7Bq/cm3 Particulate: I-131: approx. 9E-8Bq/cm3, Cs-134: approx. 3E-7Bq/cm3, Cs-137: approx. 3E-7Bq/cm3

^{*} O.OE - O means O.O x 10-O

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

Place of Sampling	West Gate o Daiich		MP-1 of Fuki (Refei		ini		Density limit in the
Time of Sampling	Decembe 7:00-		December 9:37-	•			air to workers engaged in tasks associated with
Detected Nuclides (Half-life)	density of sample (Bq/cm3)	Scaling Factor (/)	density of sample (Bq/cm3)	Scaling Factor (/)	density of sample (Bq/cm3)	Scaling Factor (/)	radiation (Bq/cm3) *
I-131 (about 8 days)	ND	-	ND	-			1E-03
Cs-134 (about 2 years)	ND	-	ND	-			2E-03
Cs-137 (about 30 years)	ND	-	ND	-			3E-03
Nb-95 (approx.35days)	ND	-	ND	-			2E-02
Tc-99m (approx.6hrs)	ND	-	ND	-			7E-01
Ag-110m (approx.250days)	ND	-	ND	-			3E-03
Sb-125 (approx.3yrs)	ND	-	ND	-			6E-03
Te- 129(approx.70mins)	ND	-	ND	-			4E-01
Te-129m (approx.34days)	ND	-	ND	-			4E-03
I-132(approx.2hrs)	ND	-	ND	-			7E-02
Te-132 (approx.78hrs)	ND	-	ND	1			4E-03
I-133(approx.21hrs)	ND	-	ND	-			5E-03
Cs-136 (approx.13days)	ND	-	ND	-			1E-02
Ba-140 (approx.13days)	ND	-	ND	-			1E-02
La-140 (approx.40hrs)	ND	-	ND	-			1E-02

^{*} The value of radioactivity density is the sum of the value of volatile nuclide's density and the value of particulate nuclide's density.

^{*} O.OE - O means O.O x 10-O

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{*} When the radioactivity density is below the detection limit, it shows "ND" which means "Not Detectable". The detection limits of major three nuclide that are not detected at west gate of Fukushima Daiichi NPP are as follows: Volatile: I-131: approx. 1E-7Bq/cm3, Cs-134: approx. 3E-7Bq/cm3, Cs-137: approx. 2E-7Bq/cm3 Particulate: I-131: approx. 2E-7Bq/cm3 The detection limits of three major nuclide that are not detected at MP-1 of Fukushima Daini NPP are as follows: Volatile: I-131: approx. 2E-6Bq/cm3, Cs-134: approx. 3E-6Bq/cm3, Cs-137: approx. 3E-6Bq/cm3 Particulate: I-131: approx. 8E-7Bq/cm3, Cs-134: approx. 2E-6Bq/cm3, Cs-137: approx. 2E-6Bq/cm3

Place of Sampling	West Gate o Daiich		MP-1 of Fuki (Refer				
Time of Sampling	Decembe 7:00-		December 9:20-				Density limit in the air to workers engaged in tasks associated with radiation
Detected Nuclides (Half-life)	density of sample (Bq/cm3)	Scaling Factor (/)	density of sample (Bq/cm3)	Scaling Factor (/)	density of sample (Bq/cm3)	Scaling Factor (/)	(Bq/cm3) *
I-131 (about 8 days)	ND	-	ND	-			1E-03
Cs-134 (about 2 years)	ND	-	ND	-			2E-03
Cs-137 (about 30 years)	ND	-	ND	-			3E-03
Nb-95 (approx.35days)	ND	-	ND	-			2E-02
Tc-99m (approx.6hrs)	ND	-	ND	-			7E-01
Ag-110m (approx.250days)	ND	-	ND	-			3E-03
Sb-125 (approx.3yrs)	ND	-	ND	-			6E-03
Te-129(approx.70mins)	ND	-	ND	-			4E-01
Te-129m (approx.34days)	ND	-	ND	-			4E-03
I-132(approx.2hrs)	ND	-	ND	-			7E-02
Te-132 (approx.78hrs	ND	-	ND	-			4E-03
I-133(approx.21hrs)	ND	-	ND	-			5E-03
Cs-136 (approx.13days)	ND	-	ND	-			1E-02
Ba-140 (approx.13days)	ND	-	ND	-			1E-02
La-140 (approx.40hrs)	ND	-	ND	-			1E-02

^{*} The value of radioactivity density is the sum of the value of volatile nuclide's density and the value of particulate nuclide's density.

^{*} O.OE - O means O.O x 10-O

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{*} When the radioactivity density is below the detection limit, it shows "ND" which means "Not Detectable". The detection limits of major three nuclide that are not detected at west gate of Fukushima Daiichi NPP are as follows: Volatile: I-131: approx. 1E-7Bq/cm3, Cs-134: approx. 3E-7Bq/cm3, Cs-137: approx. 4E-7Bq/cm3 Particulate: I-131: approx. 7E-8Bq/cm3, Cs-134: approx. 2E-7Bq/cm3, Cs-134: approx. 2E-7Bq/cm3, Cs-131: approx. 2E-6Bq/cm3, Cs-134: approx. 3E-6Bq/cm3, Cs-134: approx. 3E-6Bq/cm3, Cs-137: approx. 3E-6Bq/cm3 Particulate: I-131: approx. 9E-7Bq/cm3, Cs-134: approx. 1E-6Bq/cm3, Cs-137: approx. 1E-6Bq/cm3

Place of Sampling	West Gate o Daiich	ni NPS	MP-1 of Fukt (Refer	rence)	ni		Density limit in
Time of Sampling	Decembe 7:00-	·	December 9:10-				the air to workers engaged in tasks
Detected Nuclides (Half-life)	density of sample (Bq/cm3)	Scaling Factor (/)	density of sample (Bq/cm3)	Scaling Factor (/)	density of sample (Bq/cm3)	Scaling Factor (/)	associated with radiation (Bq/cm3) *
I-131 (about 8 days)	ND	-	ND	-			1E-03
Cs-134 (about 2 years)	ND	-	ND	-			2E-03
Cs-137 (about 30 years)	ND	-	ND	-			3E-03
Nb-95 (approx.35days)	ND	-	ND	-			2E-02
Tc-99m (approx.6hrs)	ND	-	ND	-			7E-01
Ag-110m (approx.250days)	ND	-	ND	-			3E-03
Sb-125 (approx.3yrs)	ND	-	ND	-			6E-03
129(approx.70min	ND	-	ND	-			4E-01
Te-129m (approx.34days)	ND	-	ND	-			4E-03
I-132(approx.2hrs)	ND	-	ND	-			7E-02
Te-132 (approx.78hrs)	ND	-	ND	-			4E-03
I- 133(approx.21hrs)	ND	-	ND	-			5E-03
Cs-136 (approx.13days)	ND	-	ND	-			1E-02
Ba-140 (approx.13days)	ND	-	ND	-			1E-02
La-140 (approx.40hrs)	ND	-	ND	-			1E-02

^{*} The value of radioactivity density is the sum of the value of volatile nuclide's density and the value of particulate nuclide's density

^{*} O.OE - O means O.O x 10-O

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{*} When the radioactivity density is below the detection limit, it shows "ND" which means "Not Detectable". The detection limits of major three nuclide that are not detected at west gate of Fukushima Daiichi NPP are as follows: Volatile: I-131: approx. 1E-7Bq/cm3, Cs-134: approx. 3E-7Bq/cm3, Cs-137: approx. 4E-7Bq/cm3

Particulate: I-131: approx. 6E-8Bq/cm3, Cs-134: approx. 2E-7Bq/cm3, Cs-137: approx. 2E-7Bq/cm3

The detection limits of three major nuclide that are not detected at MP-1 of Fukushima Daini NPP are as follows: Volatile: I-131: approx. 2E-6Bq/cm3, Cs-134: approx. 3E-6Bq/cm3, Cs-137: approx. 3E-6Bq/cm3

Particulate: I-131: approx. 9E-7Bq/cm3, Cs-134: approx. 2E-6Bq/cm3, Cs-137: approx. 2E-6Bg/cm3

Place of Sampling	Daiich	of Fukushima ni NPS r 12, 2011	MP-1 of Fuk (Refer	,			Density limit in the air
Time of Sampling		1 12, 2011 12:00	9:41				to workers engaged in tasks associated with
Detected Nuclides (Half-life)	density of sample (Bq/cm3)	Scaling Factor (/)	density of sample (Bq/cm3)	Scaling Factor (/)	density of sample (Bq/cm3)	Scaling Factor (/)	radiation (Bq/cm3) *
I-131 (about 8 days)	ND	-	ND	-			1E-03
Cs-134 (about 2 years)	ND	-	ND	-			2E-03
Cs-137 (about 30 years)	ND	-	ND	-			3E-03
Nb-95 (approx.35days)	ND	-	ND	-			2E-02
Tc-99m (approx.6hrs)	ND	-	ND	-			7E-01
Ag-110m (approx.250days)	ND	1	ND	ı			3E-03
Sb-125 (approx.3yrs)	ND	1	ND	1			6E-03
Te- 129(approx.70mins)	ND	1	ND	1			4E-01
Te-129m (approx.34days)	ND	-	ND	-			4E-03
I-132(approx.2hrs)	ND	-	ND	-			7E-02
Te-132 (approx.78hrs)	ND	-	ND	-			4E-03
I-133(approx.21hrs)	ND	-	ND	-			5E-03
Cs-136 (approx.13days)	ND	-	ND	1			1E-02
Ba-140 (approx.13days)	ND	-	ND	-			1E-02
La-140 (approx.40hrs)	ND	-	ND	-			1E-02

^{*} The value of radioactivity density is the sum of the value of volatile nuclide's density and the value of particulate nuclide's density.

^{*} O.OE - O means O.O x 10-O

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{*} When the radioactivity density is below the detection limit, it shows "ND" which means "Not Detectable". The detection limits of major three nuclide that are not detected at west gate of Fukushima Daiichi NPP are as follows: Volatile: I-131: approx. 1E-7Bq/cm3, Cs-134: approx. 3E-7Bq/cm3, Cs-137: approx. 4E-7Bq/cm3 Particulate: I-131: approx. 7E-8Bq/cm3, Cs-134: approx. 2E-7Bq/cm3, Cs-137: approx. 3E-6Bq/cm3 Particulate: I-131: approx. 2E-6Bq/cm3, Cs-134: approx. 4E-6Bq/cm3, Cs-137: approx. 3E-6Bq/cm3

Particulate: I-131: approx. 9E-7Bq/cm3, Cs-134: approx. 1E-6Bq/cm3, Cs-137: approx. 1E-6Bq/cm3

Place of Sampling Time of Sampling	Decembe	ni NPS	MP-1 of Fuki (Refer Decembe 9:38-	r 13, 2011			Density limit in the air to workers engaged in
Detected Nuclides (Half-life)	density of sample (Bq/cm3)	Scaling Factor	density of sample (Bq/cm3)	Scaling Factor	density of sample (Bq/cm3)	Scaling Factor (/)	tasks associated with radiation (Bq/cm3) *
I-131 (about 8 days)	ND	-	ND	-			1E-03
Cs-134 (about 2 years)	ND	-	ND	-			2E-03
Cs-137 (about 30 years)	ND	-	ND	-			3E-03
Nb-95 (approx.35days)	ND	-	ND	-			2E-02
Tc-99m (approx.6hrs)	ND	-	ND	-			7E-01
Ag-110m (approx.250days)	ND	•	ND	•			3E-03
Sb-125 (approx.3yrs)	ND	•	ND	•			6E-03
Te- 129(approx.70mins)	ND	-	ND	-			4E-01
Te-129m (approx.34days)	ND	-	ND	-			4E-03
I-132(approx.2hrs)	ND	-	ND	-			7E-02
Te-132 (approx.78hrs)	ND	-	ND	-			4E-03
I-133(approx.21hrs)	ND	-	ND	-			5E-03
Cs-136 (approx.13days)	ND	-	ND	-			1E-02
Ba-140 (approx.13days)	ND	-	ND	-			1E-02
La-140 (approx.40hrs)	ND	-	ND	-			1E-02

^{*} The value of radioactivity density is the sum of the value of volatile nuclide's density and the value of particulate nuclide's density.

^{*} O.OE - O means O.O x 10-O

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{*} When the radioactivity density is below the detection limit, it shows "ND" which means "Not Detectable". The detection limits of major three nuclide that are not detected at west gate of Fukushima Daiichi NPP are as follows: Volatile: I-131: approx. 1E-7Bq/cm3, Cs-134: approx. 3E-7Bq/cm3, Cs-137: approx. 4E-7Bq/cm3 Particulate: I-131: approx. 7E-8Bq/cm3, Cs-134: approx. 2E-7Bq/cm3, Cs-137: approx. 2E-7Bq/cm3 Particulate: I-131: approx. 2E-6Bq/cm3, Cs-134: approx. 2E-6Bq/cm3, Cs-137: approx. 2E-6Bq/cm3

Particulate: I-131: approx. 9E-7Bq/cm3, Cs-134: approx. 2E-6Bq/cm3, Cs-137: approx. 1E-6Bq/cm3

Place of Sampling			Fukushima I	Daiichi MP-3	Fukushima I	Daiichi MP-8	
Time of Sampling	Decembe 9:20-		Decembe 9:33-		Decembe 9:45-		Density limit in the air to workers engaged in tasks
Detected Nuclides (Half-life)	density of sample (Bq/cm3)	Scaling Factor (/)	density of sample (Bq/cm3)	Scaling Factor (/)	density of sample (Bq/cm3)	Scaling Factor (/)	associated with radiation (Bq/cm3) *
I-131 (about 8 days)	ND	-	ND	-	ND	-	1E-03
Cs-134 (about 2 years)	ND	-	ND	-	ND	-	2E-03
Cs-137 (about 30 years)	ND	-	ND	-	ND	-	3E-03
Nb-95 (approx.35days)	ND	-	ND	-	ND	-	2E-02
Tc-99m (approx.6hrs)	ND	-	ND	-	ND	-	7E-01
Ag-110m (approx.250days)	ND	-	ND	-	ND	-	3E-03
Sb-125 (approx.3yrs)	ND	-	ND	-	ND	-	6E-03
129(approx.70min	ND	-	ND	-	ND	-	4E-01
Te-129m (approx.34days)	ND	-	ND	-	ND	-	4E-03
I-132(approx.2hrs)	ND	-	ND	-	ND	-	7E-02
Te-132 (approx.78hrs)	ND	-	ND	-	ND	-	4E-03
I- 133(approx.21hrs)	ND	-	ND	-	ND	-	5E-03
Cs-136 (approx.13days)	ND	-	ND	-	ND	-	1E-02
Ba-140 (approx.13days)	ND	-	ND	-	ND	-	1E-02
La-140 (approx.40hrs)	ND	-	ND	-	ND	-	1E-02

^{*} The value of radioactivity density is the sum of the value of volatile nuclide's density and the value of particulate nuclide's density.

The detection limits of major three nuclide that are not detected are as follows: Volatile: I-131: approx. 2E-7Bq/cm3, Cs-134: approx. 4E-7Bq/cm3, Cs-137: approx. 5E-7Bq/cm3 Particulate: I-131: approx. 9E-8Bq/cm3, Cs-134: approx. 2E-7Bq/cm3, Cs-137: approx. 3E-7Bq/cm3

^{*} O.OE - O means O.O x 10-O

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

Place of Sampling	West Gate o Daiich	i NPS	MP-1 of Fuki (Refer	rence)			
Time of Sampling	December 7:00-		December 9:22-				Density limit in the air to workers engaged in tasks
Detected Nuclides (Half-life)	density of sample (Bq/cm3)	Scaling Factor (/)	density of sample (Bq/cm3)	Scaling Factor (/)	density of sample (Bq/cm3)	Scaling Factor (/)	associated with radiation (Bq/cm3) *
I-131 (about 8 days)	ND	-	ND	-			1E-03
Cs-134 (about 2 years)	ND	-	ND	-			2E-03
Cs-137 (about 30 years)	ND	-	ND	-			3E-03
Nb-95 (approx.35days)	ND	1	ND	1			2E-02
Tc-99m (approx.6hrs)	ND	1	ND	1			7E-01
Ag-110m (approx.250days)	ND	1	ND	1			3E-03
Sb-125 (approx.3yrs)	ND	-	ND	-			6E-03
129(approx.70mins	ND	-	ND	-			4E-01
Te-129m (approx.34days)	ND	-	ND	-			4E-03
I-132(approx.2hrs)	ND	-	ND	-			7E-02
Te-132 (approx.78hrs)	ND	1	ND	1			4E-03
I-133(approx.21hrs)	ND	-	ND	-			5E-03
Cs-136 (approx.13days)	ND	-	ND	-			1E-02
Ba-140 (approx.13days)	ND	-	ND	-			1E-02
La-140 (approx.40hrs)	ND	-	ND	-			1E-02

^{*} The value of radioactivity density is the sum of the value of volatile nuclide's density and the value of particulate nuclide's density.

^{*} O.OE - O means O.O x 10-O

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{*} When the radioactivity density is below the detection limit, it shows "ND" which means "Not Detectable". The detection limits of major three nuclide that are not detected at west gate of Fukushima Daiichi NPP are as follows: Volatile: I-131: approx. 1E-7Bq/cm3, Cs-134: approx. 3E-7Bq/cm3, Cs-137: approx. 3E-7Bq/cm3

The detection limits of three major nuclide that are not detected at MP-1 of Fukushima Daini NPP are as follows:

Volatile: I-131: approx. 2E-6Bq/cm3, Cs-137: approx. 3E-6Bq/cm3

Particulate: I-131: approx. 7E-7Bq/cm3, Cs-134: approx. 2E-6Bq/cm3, Cs-137: approx. 1E-6Bq/cm3

Particulate: I-131: approx. 7E-7Bq/cm3, Cs-134: approx. 2E-6Bq/cm3, Cs-137: approx. 1E-6Bq/cm3

Place of Sampling	Building of	t Monitoring Fukushima ichi	Water Treatme Fukushim	ent Building of na Daiichi	Switching Yard 6, Fukushi		Density limit in the air to
Time of Sampling		r 14, 2011 14:30	December 9:51-	,	December 10:02-	,	workers engaged in tasks associated with radiation
Detected Nuclides (Half-life)	density of sample (Bq/cm3)	Scaling Factor (/)	density of sample (Bq/cm3)	Scaling Factor (/)	density of sample (Bq/cm3)	Scaling Factor (/)	(Bq/cm3) *
I-131 (about 8 days)	ND	-	ND	-	ND	-	1E-03
Cs-134 (about 2 years)	ND	-	ND	-	1.8E-06	0.00	2E-03
Cs-137 (about 30 years)	ND	-	ND	-	2.0E-06	0.00	3E-03
Nb-95 (approx.35days)	ND	-	ND	-	ND	-	2E-02
Tc-99m (approx.6hrs)	ND	-	ND	-	ND	-	7E-01
Ag-110m (approx.250days)	ND	-	ND	-	ND	-	3E-03
Sb-125 (approx.3yrs)	ND	-	ND	-	ND	-	6E-03
Te-129(approx.70mins)	ND	-	ND	-	ND	-	4E-01
Te-129m (approx.34days)	ND	-	ND	-	ND	-	4E-03
I-132(approx.2hrs)	ND	-	ND	-	ND	-	7E-02
Te-132 (approx.78hrs)	ND	-	ND	-	ND	-	4E-03
I-133(approx.21hrs)	ND	-	ND	-	ND	-	5E-03
Cs-136 (approx.13days)	ND	-	ND	-	ND	-	1E-02
Ba-140 (approx.13days)	ND	-	ND	-	ND	-	1E-02
La-140 (approx.40hrs)	ND	-	ND	-	ND	-	1E-02

^{*} The value of radioactivity density is the sum of the value of volatile nuclide's density and the value of particulate nuclide's density.

The detection limits of major three nuclide that are not detected are as follows: Volatile: I-131: approx. 2E-7Bq/cm3, Cs-134: approx. 5E-7Bq/cm3, Cs-137: approx. 5E-7Bq/cm3 Particulate: I-131: approx. 1E-7Bq/cm3, Cs-134: approx. 3E-7Bq/cm3, Cs-137: approx. 3E-7Bq/cm3

^{*} O.OE - O means O.O x 10-O

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

Place of Sampling	West Gate o Daiich		MP-1 of Fuki (Refei	ushima Daini rence)			Density limit in
Time of Sampling	December 7:00-		December 9:41-				the air to workers engaged in tasks associated with
Detected Nuclides (Half-life)	density of sample (Bq/cm3)	Scaling Factor (/)	density of sample (Bq/cm3)	Scaling Factor (/)	density of sample (Bq/cm3)	Scaling Factor (/)	radiation (Bq/cm3) *
I-131 (about 8 days)	ND	-	ND	-			1E-03
Cs-134 (about 2 years)	ND	-	ND	-			2E-03
Cs-137 (about 30 years)	ND	-	ND	1			3E-03
Nb-95 (approx.35days)	ND	-	ND	-			2E-02
Tc-99m (approx.6hrs)	ND	-	ND	-			7E-01
Ag-110m (approx.250days)	ND	-	ND	-			3E-03
Sb-125 (approx.3yrs)	ND	-	ND	-			6E-03
Te- 129(approx.70mins)	ND	-	ND	-			4E-01
Te-129m (approx.34days)	ND	-	ND	1			4E-03
I-132(approx.2hrs)	ND	-	ND	-			7E-02
Te-132 (approx.78hrs)	ND	-	ND	-			4E-03
I-133(approx.21hrs)	ND	-	ND	-			5E-03
Cs-136 (approx.13days)	ND	-	ND	-			1E-02
Ba-140 (approx.13days)	ND	-	ND	-			1E-02
La-140 (approx.40hrs)	ND	-	ND	-			1E-02

^{*} The value of radioactivity density is the sum of the value of volatile nuclide's density and the value of particulate nuclide's density.

^{*} O.OE - O means O.O x 10-O

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{*} When the radioactivity density is below the detection limit, it shows "ND" which means "Not Detectable". The detection limits of major three nuclide that are not detected at west gate of Fukushima Daiichi NPP are as follows: Volatile: I-131: approx. 1E-7Bq/cm3, Cs-134: approx. 3E-7Bq/cm3, Cs-137: approx. 3E-7Bq/cm3 Particulate: I-131: approx. 6E-8Bq/cm3, Cs-134: approx. 2E-7Bq/cm3, Cs-137: approx. 2E-7Bq/cm3 The detection limits of three major nuclide that are not detected at MP-1 of Fukushima Daini NPP are as follows: Volatile: I-131: approx. 2E-6Bq/cm3, Cs-134: approx. 2E-6Bq/cm3, Cs-137: approx. 3E-6Bq/cm3 Particulate: I-131: approx. 1E-6Bg/cm3, Cs-134: approx. 2E-6Bq/cm3, Cs-137: approx. 1E-6Bg/cm3

Place of Sampling	North Side Fukushima D Decembe	aiichi Unit 1		iiichi Unit 1 &	Fukushima Da	e Slope of hiichi Unit 3 & 4 r 15, 2011	Density limit in the air to workers engaged in tasks
Time of Sampling	8:52-	•	9:00-			14:05	associated with
Detected Nuclides (Half-life)	density of sample (Bq/cm3)	Scaling Factor (/)	density of sample (Bq/cm3)	Scaling Factor (/)	density of sample (Bq/cm3)	Scaling Factor (/)	radiation (Bq/cm3) *
I-131 (about 8 days)	ND	-	ND	-	ND	-	1E-03
Cs-134 (about 2 years)	ND	-	ND	-	ND	-	2E-03
Cs-137 (about 30 years)	ND	-	ND	-	3.8E-06	0.00	3E-03
Nb-95 (approx.35days)	ND	-	ND	-	ND	-	2E-02
Tc-99m (approx.6hrs)	ND	-	ND	-	ND	-	7E-01
Ag-110m (approx.250days)	ND	-	ND	-	ND	-	3E-03
Sb-125 (approx.3yrs)	ND	-	ND	-	ND	-	6E-03
Te- 129(approx.70mins)	ND	-	ND	-	ND	-	4E-01
Te-129m (approx.34days)	ND	-	ND	-	ND	-	4E-03
I-132(approx.2hrs)	ND	-	ND	-	ND	-	7E-02
Te-132 (approx.78hrs)	ND	-	ND	-	ND	-	4E-03
I-133(approx.21hrs)	ND	-	ND	-	ND	-	5E-03
Cs-136 (approx.13days)	ND	-	ND	-	ND	-	1E-02
Ba-140 (approx.13days)	ND	-	ND	-	ND	-	1E-02
La-140 (approx.40hrs)	ND	-	ND	-	ND	-	1E-02

^{*} The value of radioactivity density is the sum of the value of volatile nuclide's density and the value of particulate nuclide's density.

The detection limits of major three nuclide that are not detected are as follows: Volatile: I-131: approx. 2E-6Bq/cm3, Cs-134: approx. 4E-6Bq/cm3, Cs-137: approx. 5E-6Bq/cm3 Particulate: I-131: approx. 1E-6Bq/cm3, Cs-134: approx. 3E-6Bq/cm3, Cs-137: approx. 3E-6Bq/cm3

^{*} O.OE - O means O.O x 10-O

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

Place of Sampling	Fukushima Da						Density limit in	
Time of Sampling	December 9:12-	•					the air to workers engaged in tasks associated with	
Detected Nuclides (Half-life)	density of sample (Bq/cm3)	Scaling Factor (/)	density of sample (Bq/cm3)	Scaling Factor (/)	density of sample Factor (Bq/cm3) (/)		radiation (Bq/cm3)*	
I-131 (about 8 days)	ND	-					1E-03	
Cs-134 (about 2 years)	3.4E-06	0.00					2E-03	
Cs-137 (about 30 years)	4.5E-06	0.00					3E-03	
Nb-95 (approx.35days)	ND	-					2E-02	
Tc-99m (approx.6hrs)	ND	-					7E-01	
Ag-110m (approx.250days)	ND	-					3E-03	
Sb-125 (approx.3yrs)	ND	-					6E-03	
Te- 129(approx.70mins)	ND	-					4E-01	
Te-129m (approx.34days)	ND	-					4E-03	
I-132(approx.2hrs)	ND	-					7E-02	
Te-132 (approx.78hrs)	ND	-					4E-03	
I-133(approx.21hrs)	ND	-					5E-03	
Cs-136 (approx.13days)	ND	-					1E-02	
Ba-140 (approx.13days)	ND	-					1E-02	
La-140 (approx.40hrs)	ND	-					1E-02	

^{*} The value of radioactivity density is the sum of the value of volatile nuclide's density and the value of particulate nuclide's density.

The detection limits of major three nuclide that are not detected are as follows: Volatile: I-131: approx. 2E-7Bq/cm3, Cs-134: approx. 4E-7Bq/cm3, Cs-137: approx. 5E-7Bq/cm3 Particulate: I-131: approx. 1E-7Bq/cm3 Please note that these nuclides are sometimes detected even when they are below the limits, contingent on the detector or samples.

^{*} O.OE - O means O.O x 10-O

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

Place of Sampling	North of Discharge Channel of 5-6u of 1F (approx. 30m north of 5-6u discharge channel)		Around South Channel (appox. 330m s Discharge C	of 1F south of 1-4u	Around North Channel (Around 3,4u Chann (approx. 10 kn	of 2F Discharge el)	Around Iwasawa (appox. 7 km s Discharge C (appox. 16 km	outh of 1,2u channel)	Density limit by the announcement of Reactor Regulation (Bq/L)
Time of Sampling	December 1, 2011 8:45		December 6:25			December 1, 2011 8:30		1, 2011	(the density limit in the water outside of
Detected Nuclides (Half-life)	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor (/)	surrounding monitored areas in the section 6 of the appendix 2)
I-131 (about 8 days)	ND	-	ND	-	ND	-	ND	-	40
Cs-134 (about 2 years)	ND	-	2.5	0.04	ND	-	0.87	0.01	60
Cs-137 (about 30 years)	1.2	0.01	3.5	0.04	1.6	0.02	ND	-	90
Mo-99 (approx. 66hrs)	ND	-	ND	-	ND	-	ND	-	1,000
Tc-99m (approx.6hrs)	ND	-	ND	-	ND	-	ND	-	40,000
Te-129m (approx.34days)	ND	-	ND	-	ND	-	ND	-	300
Te- 129(approx.70mins)	ND	-	ND	-	ND	-	ND	-	10,000
Te-132 (approx.78hrs)	ND	-	ND	-	ND	-	ND	-	200
I-132 (approx.2hrs)	ND	-	ND	-	ND	-	ND	-	3,000
Cs-136 (approx.13days)	ND	-	ND	-	ND	-	ND	-	300
Ba- 140(approx.13days)	ND	-	ND	-	ND	-	ND	-	300
La-140 (approx. 40hrs)	ND	-	ND	-	ND	-	ND	-	400

^{*} Density by the announcement of Reactor Regulation is stated with an amount converted from Bq/cm3 to Bq/L.

The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 0.89Bq/L, Cs-134: approx. 0.92Bq/L, Cs-137: approx. 1.0Bq/L Please note that these nuclides are sometimes detected even when they are below the limits, contingent on the detector or samples.

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

Place of Sampling	3 km offsho Haramachi Wa Layer	ard Upper	3 km offsh Haramachi Wa Layer	ard Lower	3 km offshore Ward Upper	Layer	3 km offshore Ward Lower November 3	r Layer	3 km offsh Iwasawa shor Layer	re Upper	3 km offsh Iwasawa shor Layer	re Lower r	Density limit by the announcement of Reactor Regulation (Bq/L) (the density limit in the
Time of Sampling	(Not samp		(Not samp	,	(Not samp		(Not sam)	*	(Not sam)	,	(Not sam		water outside of
Detected Nuclides (Half-life)	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor	surrounding monitored areas in the section 6 of the appendix 2)
I-131 (about 8 days)	-	-	-	-	-	-	-	-	-	-	-	-	40
Cs-134 (about 2 years)	-	-	-	-	-	-	-	-	-	-	-	-	60
Cs-137 (about 30 years)	-	-	-	-	-	-	-	-	-	-	-	-	90
Mo-99 (approx. 66hrs)	-	-	-	-	-	-	-	-	-	ı	-	-	1,000
Tc-99m (approx.6hrs)	-	-	-	-	-	-	-	-	-	-	-	-	40,000
Te-129m (approx.34days)	-	-	-	-	-	-	-	-	-	-	-	-	300
Te- 129(approx.70mins)	-	-	-	-	-	-	-	-	-	-	-	-	10,000
Te-132 (approx.78hrs	-	-	-	-	-	-	-	-	-	ı	-	-	200
I-132 (approx.2hrs)	-	-	-	-	-	-	-	-	-	-	-	-	3,000
Cs-136 (approx.13days)	-	-	-	-	-	-	-	-	-	,	-	-	300
Ba- 140(approx.13days)	-	-	-	-	-	-	-	-	-	,	-	-	300
La-140 (approx. 40hrs)	-	-	-	-	-	-	-	-	-	-	-	-	400

^{*} Density by the announcement of Reactor Regulation is stated with an amount converted from Bq/cm3 to Bq/L.

Place of Sampling Time of Sampling	8 km offshore Ward Upper November 30 (Not samp	Layer 0, 2011	8 km offshore Ward Lower November 3	0, 2011	8 km offsh Iwasawa shor Layer November 3 (Not sam	re Upper r 0, 2011	8 km offsh Iwasawa shor Layer November 3 (Not sam	re Lower r 0, 2011					Density limit by the announcement of Reactor Regulation (Bq/L) (the density limit in the water outside of
Detected Nuclides (Half-life)	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)		Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	surrounding monitored areas in the section 6 of the appendix 2)
I-131 (about 8 days)	-	-	-	-	-	-	-	-					40
Cs-134 (about 2 years)	-	-	-	-	-	-	-	-					60
Cs-137 (about 30 years)	-	-	-	-	-	-	-	-					90
Mo-99 (approx. 66hrs)	-	1	-	-	-	-	-	-					1,000
Tc-99m (approx.6hrs)	-	-	-	1	-	-	-	-					40,000
Te-129m (approx.34days)	-	-	-	1	-	-	-	-					300
Te- 129(approx.70mins)	-	-	-	-	-	-	-	-					10,000
Te-132 (approx.78hrs	-	-	-	-	-	-	-	-					200
I-132 (approx.2hrs)	-	-	-	-	-	-	-	-					3,000
Cs-136 (approx.13days)	-	-	-	-	-	-	-	-					300
Ba- 140(approx.13days)	-	-	-	-	-	-	-	-					300
La-140 (approx. 40hrs)	-	-	-	-	-	-	-	-					400

^{*} Density by the announcement of Reactor Regulation is stated with an amount converted from Bq/cm3 to Bq/L.

Place of Sampling	North of Discharg 5-6u of (approx. 30m no discharge c	1F orth of 5-6u	Around South Channel (appox. 330m s Discharge C	of 1F outh of 1-4u	Around North Channel (Around 3,4u Chann (approx. 10 kn	of 2F Discharge el)	Around Iwasawa (appox. 7 km s Discharge C (appox. 16 km	outh of 1,2u channel)	Density limit by the announcement of Reactor Regulation (Bq/L)
Time of Sampling	December 2, 2011 8:50		December 2 8:30		December 2 8:20	*	December 2 8:00		(the density limit in the water outside of
Detected Nuclides (Half-life)	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor (/)	surrounding monitored areas in the section 6 of the appendix 2)
I-131 (about 8 days)	ND	-	ND	•	ND	-	ND	-	40
Cs-134 (about 2 years)	1.4	0.02	1.6	0.03	ND	-	1.2	0.02	60
Cs-137 (about 30 years)	ND	-	1.2	0.01	1.4	0.02	ND	-	90
Mo-99 (approx. 66hrs)	ND	-	ND	-	ND	-	ND	-	1,000
Tc-99m (approx.6hrs)	ND	-	ND	-	ND	-	ND	-	40,000
Te-129m (approx.34days)	ND	-	ND	-	ND	-	ND	-	300
1e- 129(approx.70min	ND	-	ND	-	ND	-	ND	-	10,000
Te-132 (approx.78hrs)	ND	-	ND	-	ND	-	ND	-	200
I-132 (approx.2hrs)	ND	-	ND	-	ND	-	ND	-	3,000
Cs-136 (approx.13days)	ND	-	ND	-	ND	-	ND	-	300
Ba- 140(approx.13day	ND	-	ND	-	ND	-	ND	-	300
La-140 (approx. 40hrs)	ND	-	ND	-	ND	-	ND	-	400

^{*} Density by the announcement of Reactor Regulation is stated with an amount converted from Bq/cm3 to Bq/L.

The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 0.70Bq/L, Cs-134: approx. 0.93Bq/L, Cs-137: approx. 1.1Bq/L Please note that these nuclides are sometimes detected even when they are below the limits, contingent on the detector or samples.

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

Place of Sampling	North of Discharge Channel of 5-6u of 1F (approx. 30m north of 5-6u discharge channel)		Around South Discharge Channel of 1F (appox. 330m south of 1-4u Discharge Channel)		Around North Channel (Around 3,4u Chann (approx. 10 kn	of 2F Discharge el)	Around Iwasawa (appox. 7 km s Discharge C (appox. 16 km	outh of 1,2u channel)	Density limit by the announcement of Reactor Regulation (Bq/L)
Time of Sampling	December 3, 2011 8:45		December 3, 2011 8:25		December 3 8:15		December 37:50		(the density limit in the water outside of
Detected Nuclides (Half-life)	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor (/)	surrounding monitored areas in the section 6 of the appendix 2)
I-131 (about 8 days)	ND	-	ND	-	ND	-	ND	-	40
Cs-134 (about 2 years)	2.5	0.04	1.1	0.02	ND	-	ND	-	60
Cs-137 (about 30 years)	4.2	0.05	2.2	0.02	ND	-	ND	-	90
Mo-99 (approx. 66hrs)	ND	-	ND	-	ND	-	ND	-	1,000
Tc-99m (approx.6hrs)	ND	-	ND	-	ND	-	ND	-	40,000
Te-129m (approx.34days)	ND	-	ND	-	ND	-	ND	-	300
Te-129(approx.70mins)	ND	-	ND	-	ND	-	ND	-	10,000
Te-132 (approx.78hrs)	ND	-	ND	-	ND	-	ND	-	200
I-132 (approx.2hrs)	ND	-	ND	-	ND	-	ND	-	3,000
Cs-136 (approx.13days)	ND	-	ND	-	ND	-	ND	-	300
Ba-140(approx.13days)	ND	-	ND	-	ND	-	ND	-	300
La-140 (approx. 40hrs)	ND	-	ND	-	ND	-	ND	-	400

^{*} Density by the announcement of Reactor Regulation is stated with an amount converted from Bq/cm3 to Bq/L.

The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 0.64Bq/L, Cs-134: approx. 0.95Bq/L, Cs-137: approx. 1.0Bq/L Please note that these nuclides are sometimes detected even when they are below the limits, contingent on the detector or samples.

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

Place of Sampling	North of Discharg 5-6u of (approx. 30m no discharge c	1F orth of 5-6u	Around South Channel (appox. 330m s Discharge C	of 1F south of 1-4u	Around North Channel (Around 3,4u Chann (approx. 10 km	of 2F Discharge el)	Around Iwasawa (appox. 7 km s Discharge C (appox. 16 km	outh of 1,2u Channel)	Density limit by the announcement of Reactor Regulation (Bq/L)
Time of Sampling	December 4, 2011 (Not sampled)		December 4, 2011 (Not sampled)		December (Not sam	,	December 8:00		(the density limit in the water outside of
Detected Nuclides (Half-life)	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor (/)	surrounding monitored areas in the section 6 of the appendix 2)
I-131 (about 8 days)	-	-	-	-	-	-	ND	-	40
Cs-134 (about 2 years)	-	-	-	-	-	-	ND	-	60
Cs-137 (about 30 years)	-	-	-	-	-	-	1.2	0.01	90
Mo-99 (approx. 66hrs)	-	-	-	-	-	-	ND	-	1,000
Tc-99m (approx.6hrs)	-	-	-	-	-	-	ND	-	40,000
Te-129m (approx.34days)	-	-	-	-	-	-	ND	-	300
Te-129(approx.70mins)	-	-	-	-	-	-	ND	-	10,000
Te-132 (approx.78hrs)	-	-	-	-	-	-	ND	-	200
I-132 (approx.2hrs)	-	-	-	-	-	-	ND	-	3,000
Cs-136 (approx.13days)	-	-	-	-	-	-	ND	-	300
Ba-140(approx.13days)	-	-	-	-	-	-	ND	-	300
La-140 (approx. 40hrs)	-	-	-	-	-	-	ND	-	400

^{*} Density by the announcement of Reactor Regulation is stated with an amount converted from Bq/cm3 to Bq/L.

The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 0.66Bq/L, Cs-134: approx. 0.89Bq/L Please note that these nuclides are sometimes detected even when they are below the limits, contingent on the detector or samples.

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

Place of Sampling	North of Discharg 5-6u of (approx. 30m no discharge c	1F orth of 5-6u	Around South Channel (appox. 330m s Discharge C	of 1F south of 1-4u	Around North Channel (Around 3,4u Chann (approx. 10 kr	of 2F Discharge iel)	Around Iwasawa (appox. 7 km s Discharge C (appox. 16 km	outh of 1,2u Channel)	Density limit by the announcement of Reactor Regulation (Bq/L)
Time of Sampling	December 57:15		December 6:45		December 8:30		December 57:55	·	(the density limit in the water outside of
Detected Nuclides (Half-life)	Density of Scaling Sample Factor (Bq/L) (/)		Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor (/)	surrounding monitored areas in the section 6 of the appendix 2)
I-131 (about 8 days)	ND			-	ND	-	ND	-	40
Cs-134 (about 2 years)	3.3	0.06	5.2	0.09	0.99	0.02	ND	-	60
Cs-137 (about 30 years)	4.4	0.05	5.7	0.06	ND	-	1.5	0.02	90
Mo-99 (approx. 66hrs)	ND	-	ND	-	ND	-	ND	-	1,000
Tc-99m (approx.6hrs)	ND	-	ND	-	ND	-	ND	-	40,000
Te-129m (approx.34days)	ND	-	ND	-	ND	-	ND	-	300
Te-129(approx.70mins)	ND	-	ND	-	ND	-	ND	-	10,000
Te-132 (approx.78hrs)	ND	-	ND	-	ND	-	ND	-	200
I-132 (approx.2hrs)	ND	-	ND	-	ND	-	ND	-	3,000
Cs-136 (approx.13days)	ND	-	ND	-	ND	-	ND	-	300
Ba-140(approx.13days)	ND	-	ND	-	ND	-	ND	-	300
La-140 (approx. 40hrs)	ND	-	ND	-	ND	-	ND	-	400

^{*} Density by the announcement of Reactor Regulation is stated with an amount converted from Bq/cm3 to Bq/L.

The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 0.69Bq/L, Cs-134: approx. 0.90Bq/L, Cs-137: approx. 1.0Bq/L Please note that these nuclides are sometimes detected even when they are below the limits, contingent on the detector or samples.

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

Place of Sampling	North of Discharge Cha of 1F (approx. 30m north of 5- channel)		Around South Channel (appox. 330m s Discharge C	of 1F south of 1-4u	Around North Channel (Around 3,4u Chann (approx. 10 kn	of 2F Discharge el)	Around Iwasawa (appox. 7 km s Discharge C (appox. 16 km	outh of 1,2u Channel)	Density limit by the announcement of Reactor Regulation (Bq/L)
Time of Sampling	December 6, 2 8:40	011	December (8:20		December 6 8:25		December 8:00		(the density limit in the water outside of
Detected Nuclides (Half-life)	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor (/)	surrounding monitored areas in the section 6 of the appendix 2)
I-131 (about 8 days)	ND	-	ND	-	ND	-	ND	-	40
Cs-134 (about 2 years)	2.1	0.04	3.7	0.06	ND	-	ND	-	60
Cs-137 (about 30 years)	3.0	0.03	4.5	0.05	ND	-	ND	-	90
Mo-99 (approx. 66hrs)	ND	-	ND	-	ND	-	ND	-	1,000
Tc-99m (approx.6hrs)	ND	-	ND	-	ND	-	ND	-	40,000
Te-129m (approx.34days)	ND	-	ND	-	ND	-	ND	-	300
Te-129(approx.70mins)	ND	-	ND	-	ND	-	ND	-	10,000
Te-132 (approx.78hrs)	ND	-	ND	-	ND	-	ND	-	200
I-132 (approx.2hrs)	ND	-	ND	-	ND	-	ND	-	3,000
Cs-136 (approx.13days)	ND	-	ND	-	ND	-	ND	-	300
Ba-140(approx.13days)	ND	-	ND	-	ND	-	ND	-	300
La-140 (approx. 40hrs)	ND	-	ND	-	ND	-	ND	-	400

^{*} Density by the announcement of Reactor Regulation is stated with an amount converted from Bq/cm3 to Bq/L.

The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 0.72Bq/L, Cs-134: approx. 0.94Bq/L, Cs-137: approx. 1.1Bq/L Please note that these nuclides are sometimes detected even when they are below the limits, contingent on the detector or samples.

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

Place of Sampling	15 km offsh Minami-So CityUpper	ouma	15 km offsh Minami-So CityLower	ouma	15 km offsh Ukedo-gawa Layei	Upper	15 km offsh Ukedo-gawa Laye	Lower	15 km offsh Fukushima Upper La	Daiichi	15 km offsh Fukushima Lower La	Daiichi	Density limit by the announcement of Reactor Regulation (Bg/L)
Time of Sampling	N/A		N/A		December 5 (Not sam)	*	December 5 (Not sam)	,	December 5 10時20		December 5 10時20	,	(the density limit in the water outside of
Detected Nuclides (Half-life)	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor	surrounding monitored areas in the section 6 of the appendix 2)
I-131 (about 8 days)	-	-	-	-	-	-	-	-	ND	-	ND	-	40
Cs-134 (about 2 years)	-	-	-	-	-	-	-	-	ND	-	ND	-	60
Cs-137 (about 30 years)	-	-	-	-	-	-	-	-	ND	-	ND	-	90
Mo-99 (approx. 66hrs)	-	-	-	-	-	-	-	-	ND	-	ND	-	1,000
Tc-99m (approx.6hrs)	-	-	-	-	-	-	-	-	ND	-	ND	-	40,000
Te-129m (approx.34days)	-	-	-	-	-	-	-	-	ND	-	ND	-	300
Te-129(approx.70mins)	-	-	-	-	-	-	-	-	ND	-	ND	-	10,000
Te-132 (approx.78hrs)	-	-	-	-	-	-	-	-	ND	-	ND	-	200
I-132 (approx.2hrs)	-	-	-	-	-	-	-	-	ND	-	ND	-	3,000
Cs-136 (approx.13days)	-	-	-	-	-	-	-	-	ND	-	ND	-	300
Ba-140(approx.13days)	-	-	-	-	-	-	-	-	ND	-	ND	-	300
La-140 (approx. 40hrs)	-	-	-	-	-	-	-	-	ND	-	ND	-	400

^{*} Density by the announcement of Reactor Regulation is stated with an amount converted from Bq/cm3 to Bq/L.

The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 0.58Bq/L, Cs-134: approx. 0.90Bq/L, Cs-137: approx. 0.94Bq/L Please note that these nuclides are sometimes detected even when they are below the limits, contingent on the detector or samples.

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

Place of Sampling Time of Sampling	approx. 15 km of Fukushim Upper La	a Daini ayer	of Fukushim Lower La	approx. 15 km offshore of Fukushima Daini Lower Layer December 5, 2011 9:45		nore of re Upper r	15 km offsh Iwasawa Sho Layel N/A	re Lower	15 km offsh Hirono-town Layel N/A	Upper	15 km offsk Hirono-towr Laye N/A	Lower	Density limit by the announcement of Reactor Regulation (Bq/L) (the density limit in the water outside of
Detected Nuclides (Half-life)	9:45 Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	surrounding monitored areas in the section 6 of the appendix 2)
I-131 (about 8 days)	ND	-	ND	-	-	-	-	-	-	-	-	-	40
Cs-134 (about 2 years)	ND	-	ND	-	-	-	-	-	-	-	-	-	60
Cs-137 (about 30 years)	ND	-	ND	-	-	-	-	-	-	-	-	-	90
Mo-99 (approx. 66hrs)	ND	-	ND	-	-	-	-	-	-	-	-	-	1,000
Tc-99m (approx.6hrs)	ND	-	ND	-	-	-	-	-	-	-	-	-	40,000
Te-129m (approx.34days)	ND	-	ND	-	-	-	-	-	-	-	-	-	300
Te-129(approx.70mins)	ND	-	ND	-	-	-	-	-	-	-	-	-	10,000
Te-132 (approx.78hrs)	ND	-	ND	-	-	-	-	-	-	-	-	-	200
I-132 (approx.2hrs)	ND	-	ND	-	-	-	-	-	-	-	-	-	3,000
Cs-136 (approx.13days)	ND	-	ND	-	-	-	-	-	-	-	-	-	300
Ba-140(approx.13days)	ND	-	ND	-	-	-	-	-	-	-	-	-	300
La-140 (approx. 40hrs)	ND	-	ND	-	-	-	-	-	-	-	-	-	400

^{*} Density by the announcement of Reactor Regulation is stated with an amount converted from Bq/cm3 to Bq/L.

The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 0.67Bq/L, Cs-134: approx. 0.94Bq/L, Cs-137: approx. 1.1Bq/L Please note that these nuclides are sometimes detected even when they are below the limits, contingent on the detector or samples.

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

Place of Sampling	3 km offshore of Iwaki Uppe		3 km offshore of Iwaki Lowe		3 km offshore river Upper		3 km offshore river Lower		3 km offsh Onahama po Laye	rt Upper	3 km offsh Onahama po Laye	rt Lower	Density limit by the announcement of Reactor Regulation (Bq/L)
Time of Sampling	December 5 7:25	,	December 5 7:25	*	December 5	•	December 5 6:55	,	December 5 6:30	•	December 5 6:30	*	(the density limit in the water outside of
Detected Nuclides (Half-life)	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	surrounding monitored areas in the section 6 of the appendix 2)						
I-131 (about 8 days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	40
Cs-134 (about 2 years)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	60
Cs-137 (about 30 years)	ND	-	ND	-	ND	-	ND	-	ND	-	1.2	0.01	90
Mo-99 (approx. 66hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	1,000
Tc-99m (approx.6hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	40,000
Te-129m (approx.34days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	300
Te-129(approx.70mins)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	10,000
Te-132 (approx.78hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	200
I-132 (approx.2hrs)	ND	-	ND	-	ND	-	ND	-	ND	ı	ND	-	3,000
Cs-136 (approx.13days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	300
Ba-140(approx.13days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	300
La-140 (approx. 40hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	400

^{*} Density by the announcement of Reactor Regulation is stated with an amount converted from Bq/cm3 to Bq/L.

The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 0.70Bq/L, Cs-134: approx. 0.89Bq/L, Cs-137: approx. 1.1Bq/L Please note that these nuclides are sometimes detected even when they are below the limits, contingent on the detector or samples.

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

Place of Sampling	3 km offshore Upper La	ayer	3 km offshore Lower La	ayer	3 km offsh Numanouch Layer	Upper	3 km offsh Numanouch Layer	i Lower	3 km offsh Toyoma Upp		3 km offsh Toyoma Low	er Layer	Density limit by the announcement of Reactor Regulation (Bq/L)
Time of Sampling	December 5 7:10	5, 2011	December 5 7:10	5, 2011	December 5 6:40	5, 2011	December 5 6:40	5, 2011	December 5 6:25	5, 2011	December 5 6:25		(the density limit in the water outside of
Detected Nuclides (Half-life)	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor	surrounding monitored areas in the section 6 of the appendix 2)
I-131 (about 8 days)	ND	-	ND	-	ND	1	ND	1	ND	1	ND	-	40
Cs-134 (about 2 years)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	60
Cs-137 (about 30 years)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	90
Mo-99 (approx. 66hrs)	ND		ND	-	ND	-	ND	-	ND	-	ND	-	1,000
Tc-99m (approx.6hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	40,000
Te-129m (approx.34days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	300
1e- 129(approx.70min	ND		ND	-	ND	-	ND	-	ND	-	ND	-	10,000
Te-132 (approx.78hrs)	ND		ND	-	ND	-	ND	-	ND	-	ND	-	200
I-132 (approx.2hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	3,000
Cs-136 (approx.13days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	300
Ba- 140(approx.13day	ND	-	ND	-	ND	-	ND	1	ND	1	ND	-	300
La-140 (approx. 40hrs)	ND	-	ND	-	ND	1	ND	1	ND	-	ND	-	400

^{*} Density by the announcement of Reactor Regulation is stated with an amount converted from Bq/cm3 to Bq/L.

The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 0.66Bq/L, Cs-134: approx. 0.97Bq/L, Cs-137: approx. 1.1Bq/L Please note that these nuclides are sometimes detected even when they are below the limits, contingent on the detector or samples.

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

Place of Sampling	North of Discharg 5-6u of (approx. 30m n discharge c	1F orth of 5-6u	Around South Channel (appox. 330m s Discharge C	of 1F south of 1-4u	Around North Channel (Around 3,4u Chann (approx. 10 kn	of 2F Discharge el)	Around Iwasawa (appox. 7 km s Discharge C (appox. 16 km	outh of 1,2u Channel)	Density limit by the announcement of Reactor Regulation (Bq/L)
Time of Sampling	December 8:50		December 3 8:35		December 8:25		December 3		(the density limit in the water outside of
Detected Nuclides (Half-life)	Density of Scaling Sample Factor (Bq/L) (/)		Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor (/)	surrounding monitored areas in the section 6 of the appendix 2)
I-131 (about 8 days)	ND	-	ND	-	ND	-	ND	-	40
Cs-134 (about 2 years)	4.9 0.08		4.8	0.08	ND	-	1.1	0.02	60
Cs-137 (about 30 years)	5.1	0.06	5.1	0.06	ND	-	1.3	0.01	90
Mo-99 (approx. 66hrs)	ND -		ND	-	ND	-	ND	-	1,000
Tc-99m (approx.6hrs)	ND	-	ND	-	ND	-	ND	-	40,000
Te-129m (approx.34days)	ND	-	ND	-	ND	-	ND	-	300
Te-129(approx.70mins)	ND	-	ND	-	ND	-	ND	-	10,000
Te-132 (approx.78hrs)	ND	-	ND	-	ND	-	ND	-	200
I-132 (approx.2hrs)	ND	-	ND	-	ND	-	ND	-	3,000
Cs-136 (approx.13days)	ND	-	ND	-	ND	-	ND	-	300
Ba-140(approx.13days)	ND	-	ND	-	ND	-	ND	-	300
La-140 (approx. 40hrs)	ND	-	ND	-	ND	-	ND	-	400

^{*} Density by the announcement of Reactor Regulation is stated with an amount converted from Bq/cm3 to Bq/L.

The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 1.0Bq/L, Cs-134: approx. 0.87Bq/L, Cs-137: approx. 1.1Bq/L Please note that these nuclides are sometimes detected even when they are below the limits, contingent on the detector or samples.

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

Place of Sampling	3 km offsh Haramachi Wa Layei	ard Upper	3 km offsh Haramachi Wa Layei	ard Lower	3 km offshore Ward Upper		3 km offshore Ward Lowe		3 km offsh Iwasawa sho Laye	re Upper	3 km offsh Iwasawa shoi Layei	re Lower	Density limit by the announcement of Reactor Regulation (Bq/L)
Time of Sampling	December 6 9:50	5, 2011	December 6 9:50	•	December 6 9:30	5, 2011	December 6 9:30	5, 2011	December 6 7:35		December 6 7:35	,	(the density limit in the water outside of
Detected Nuclides (Half-life)	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	surrounding monitored areas in the section 6 of the appendix 2)
I-131 (about 8 days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	40
Cs-134 (about 2 years)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	60
Cs-137 (about 30 years)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	90
Mo-99 (approx. 66hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	1,000
Tc-99m (approx.6hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	40,000
Te-129m (approx.34days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	300
Te-129(approx.70mins)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	10,000
Te-132 (approx.78hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	200
I-132 (approx.2hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	3,000
Cs-136 (approx.13days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	300
Ba-140(approx.13days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	300
La-140 (approx. 40hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	400

^{*} Density by the announcement of Reactor Regulation is stated with an amount converted from Bq/cm3 to Bq/L.

The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 0.76Bq/L, Cs-134: approx. 0.98Bq/L, Cs-137: approx. 1.1Bq/L Please note that these nuclides are sometimes detected even when they are below the limits, contingent on the detector or samples.

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

Place of Sampling	8 km offshore Ward Uppel		8 km offshore Ward Lowel		8 km offsh Iwasawa sho Laye	re Upper	8 km offsh Iwasawa shoi Layei	re Lower					Density limit by the announcement of Reactor Regulation (Bq/L)
Time of Sampling	December 6 9:10	*	December 6 9:10	*	December 6 8:00	*	December 6 8:00	•					(the density limit in the water outside of
Detected Nuclides (Half-life)	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor (/)	surrounding monitored areas in the section 6 of the appendix 2)
I-131 (about 8 days)	ND	-	ND	-	ND	-	ND	-					40
Cs-134 (about 2 years)	ND	-	ND	-	ND	-	ND	-					60
Cs-137 (about 30 years)	ND	-	ND	-	ND	-	ND	-					90
Mo-99 (approx. 66hrs)	ND	-	ND	-	ND	-	ND	-					1,000
Tc-99m (approx.6hrs)	ND	-	ND	-	ND	-	ND	-					40,000
Te-129m (approx.34days)	ND	-	ND	-	ND	-	ND	-					300
Te-129(approx.70mins)	ND	-	ND	-	ND	-	ND	-					10,000
Te-132 (approx.78hrs)	ND	-	ND	-	ND	-	ND	-					200
I-132 (approx.2hrs)	ND	-	ND	-	ND	-	ND	-					3,000
Cs-136 (approx.13days)	ND	-	ND	-	ND	-	ND	-					300
Ba-140(approx.13days)	ND	-	ND	-	ND	-	ND	-					300
La-140 (approx. 40hrs)	ND	-	ND	-	ND	-	ND	-					400

^{*} Density by the announcement of Reactor Regulation is stated with an amount converted from Bq/cm3 to Bq/L.

The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 0.67Bq/L, Cs-134: approx. 1.0Bq/L Please note that these nuclides are sometimes detected even when they are below the limits, contingent on the detector or samples.

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

Place of Sampling	3 km offsh Souma City Layer	Upper	3 km offsh Souma City Laye	Lower	5 km offsh Souma City Laye	Upper	5 km offsh Souma City Laye	Lower	5 km offsh Kashima Upp		5 km offsh Kashima Low		Density limit by the announcement of Reactor Regulation (Bq/L)
Time of Sampling	December 6 7:05	, -	December 6 7:05	,	December 6:50	,	December 6 6:50	•	December 6	•	December 6	, -	(the density limit in the water outside of
Detected Nuclides (Half-life)	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	surrounding monitored areas in the section 6 of the appendix 2)
I-131 (about 8 days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	40
Cs-134 (about 2 years)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	60
Cs-137 (about 30 years)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	90
Mo-99 (approx. 66hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	1,000
Tc-99m (approx.6hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	40,000
Te-129m (approx.34days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	300
Te-129(approx.70mins)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	10,000
Te-132 (approx.78hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	200
I-132 (approx.2hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	3,000
Cs-136 (approx.13days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	300
Ba-140(approx.13days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	300
La-140 (approx. 40hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	400

^{*} Density by the announcement of Reactor Regulation is stated with an amount converted from Bq/cm3 to Bq/L.

The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 0.63Bq/L, Cs-134: approx. 0.91Bq/L, Cs-137: approx. 1.1Bq/L Please note that these nuclides are sometimes detected even when they are below the limits, contingent on the detector or samples.

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

Place of Sampling	North of Discharg 5-6u of (approx. 30m n discharge o	1F orth of 5-6u	Around South Channel (appox. 330m s Discharge C	of 1F south of 1-4u	Around North Channel (Around 3,4u Chann (approx. 10 kn	of 2F Discharge el)	Around Iwasawa (appox. 7 km s Discharge C (appox. 16 km	outh of 1,2u channel)	Density limit by the announcement of Reactor Regulation (Bq/L)
Time of Sampling	December 8:55		December 8:35		December 8:25		December 8:00		(the density limit in the water outside of
Detected Nuclides (Half-life)	Density of Scaling Sample Factor (Bq/L) (/)		Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor (/)	surrounding monitored areas in the section 6 of the appendix 2)
I-131 (about 8 days)	ND	-	ND	-	ND	-	ND	-	40
Cs-134 (about 2 years)	6.1	0.10	2.5	0.04	ND	-	ND	-	60
Cs-137 (about 30 years)	6.6	0.07	3.7	0.04	ND	-	ND	-	90
Mo-99 (approx. 66hrs)	ND	-	ND	-	ND	-	ND	-	1,000
Tc-99m (approx.6hrs)	ND	-	ND	-	ND	-	ND	-	40,000
Te-129m (approx.34days)	ND	-	ND	-	ND	-	ND	-	300
Te-129(approx.70mins)	ND	-	ND	-	ND	-	ND	-	10,000
Te-132 (approx.78hrs)	ND	-	ND	-	ND	-	ND	-	200
I-132 (approx.2hrs)	ND	-	ND	-	ND	-	ND	-	3,000
Cs-136 (approx.13days)	ND	-	ND	-	ND	-	ND	-	300
Ba-140(approx.13days)	ND	-	ND	-	ND	-	ND	-	300
La-140 (approx. 40hrs)	ND	-	ND	-	ND	-	ND	-	400

^{*} Density by the announcement of Reactor Regulation is stated with an amount converted from Bq/cm3 to Bq/L.

The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 0.77Bq/L, Cs-134: approx. 1.0Bq/L, Cs-137: approx. 0.99Bq/L Please note that these nuclides are sometimes detected even when they are below the limits, contingent on the detector or samples.

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

Place of Sampling	15 km offsh Minami-So CityUpper	ouma	15 km offsh Minami-So CityLower	ouma	15 km offsh Ukedo-gawa Layei	Upper	15 km offsh Ukedo-gawa Layei	Lower	15 km offsh Fukushima Upper La	Daiichi	15 km offsh Fukushima Lower La	Daiichi	Density limit by the announcement of Reactor Regulation (Bg/L)
Time of Sampling	December 7 8:15	, -	December 7 8:15	, -	December 7 8:55	', 2011	December 7 8:55		December 7 9:20		December 7 9:20	•	(the density limit in the water outside of
Detected Nuclides (Half-life)	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	surrounding monitored areas in the section 6 of the appendix 2)
I-131 (about 8 days)	ND	-	ND	-	ND	1	ND	-	ND	-	ND	-	40
Cs-134 (about 2 years)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	60
Cs-137 (about 30 years)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	90
Mo-99 (approx. 66hrs)	ND	-	ND	-	ND		ND	-	ND	-	ND	-	1,000
Tc-99m (approx.6hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	40,000
Te-129m (approx.34days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	300
Te-129(approx.70mins)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	10,000
Te-132 (approx.78hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	200
I-132 (approx.2hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	3,000
Cs-136 (approx.13days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	300
Ba-140(approx.13days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	300
La-140 (approx. 40hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	400

^{*} Density by the announcement of Reactor Regulation is stated with an amount converted from Bq/cm3 to Bq/L.

The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 0.67Bq/L, Cs-134: approx. 0.94Bq/L, Cs-137: approx. 1.1Bq/L Please note that these nuclides are sometimes detected even when they are below the limits, contingent on the detector or samples.

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

Place of Sampling	approx. 15 km of Fukushim Upper La	a Daini	approx. 15 km of Fukushim Lower La	a Daini	15 km offsh Iwasawa Sho Layei	re Upper	15 km offsh Iwasawa Sho Laye	re Lower	15 km offsh Hirono-town Layer	Upper	15 km offsh Hirono-towr Laye	Lower	Density limit by the announcement of Reactor Regulation (Bq/L)
Time of Sampling	December 7 8:45	*	December 7 8:45	7, 2011	December 7 8:10	*	December 7 8:10	,	December 7 7:35	,	December 7		(the density limit in the water outside of
Detected Nuclides (Half-life)	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor (/)	surrounding monitored areas in the section 6 of the appendix 2)
I-131 (about 8 days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	40
Cs-134 (about 2 years)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	60
Cs-137 (about 30 years)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	90
Mo-99 (approx. 66hrs)	ND	-	ND	ı	ND	ı	ND	-	ND	-	ND	-	1,000
Tc-99m (approx.6hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	40,000
Te-129m (approx.34days)	ND	-	ND	ı	ND	ı	ND	-	ND	-	ND	-	300
Te-129(approx.70mins)	ND	-	ND	ı	ND	ı	ND	-	ND	-	ND	-	10,000
Te-132 (approx.78hrs)	ND	-	ND	ı	ND	ı	ND	-	ND	-	ND	-	200
I-132 (approx.2hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	3,000
Cs-136 (approx.13days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	300
Ba-140(approx.13days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	300
La-140 (approx. 40hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	400

^{*} Density by the announcement of Reactor Regulation is stated with an amount converted from Bq/cm3 to Bq/L.

The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 0.64Bq/L, Cs-134: approx. 0.92Bq/L, Cs-137: approx. 1.1Bq/L Please note that these nuclides are sometimes detected even when they are below the limits, contingent on the detector or samples.

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

Place of Sampling	5km Offsho Numanouch Layer	i Upper	5km Offsh Numanouch Laye	i Lower									Density limit by the announcement of Reactor Regulation (Bq/L)
Time of Sampling	December 7 10:45	,	December 7 10:45										(the density limit in the water outside of
Detected Nuclides (Half-life)	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor (/)	surrounding monitored areas in the section 6 of the appendix 2)
I-131 (about 8 days)	ND	-	ND	-									40
Cs-134 (about 2 years)	ND	-	ND	-									60
Cs-137 (about 30 years)	ND	-	ND	-									90
Mo-99 (approx. 66hrs)	ND	-	ND	-									1,000
Tc-99m (approx.6hrs)	ND	-	ND	-									40,000
Te-129m (approx.34days)	ND	-	ND	-									300
Te-129(approx.70mins)	ND	-	ND	-									10,000
Te-132 (approx.78hrs)	ND	-	ND	-									200
I-132 (approx.2hrs)	ND	-	ND	-									3,000
Cs-136 (approx.13days)	ND	-	ND	-									300
Ba-140(approx.13days)	ND	-	ND	-									300
La-140 (approx. 40hrs)	ND	-	ND	-									400

^{*} Density by the announcement of Reactor Regulation is stated with an amount converted from Bq/cm3 to Bq/L.

The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 0.63Bq/L, Cs-134: approx. 0.85Bq/L, Cs-137: approx. 1.0Bq/L Please note that these nuclides are sometimes detected even when they are below the limits, contingent on the detector or samples.

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

Place of Sampling	North of Discharg 5-6u of (approx. 30m no discharge c	1F orth of 5-6u	Around South Channel (appox. 330m s Discharge C	of 1F south of 1-4u	Around North Channel (Around 3,4u Chann (approx. 10 kn	of 2F Discharge el)	Around Iwasawa (appox. 7 km s Discharge C (appox. 16 km	outh of 1,2u channel)	Density limit by the announcement of Reactor Regulation (Bq/L)
Time of Sampling	December 9 8:40	·	December 9 8:20		December 9 8:25		December 9 7:55		(the density limit in the water outside of
Detected Nuclides (Half-life)	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor (/)	surrounding monitored areas in the section 6 of the appendix 2)
I-131 (about 8 days)	ND	-	ND	-	ND	-	ND	-	40
Cs-134 (about 2 years)	2.9	0.05	1.2	0.02	ND	-	ND	-	60
Cs-137 (about 30 years)	3.3	0.04	3.3	0.04	1.0	0.01	ND	-	90
Mo-99 (approx. 66hrs)	ND	-	ND	-	ND	-	ND	-	1,000
Tc-99m (approx.6hrs)	ND	-	ND	-	ND	-	ND	-	40,000
Te-129m (approx.34days)	ND	-	ND	-	ND	-	ND	-	300
Te-129(approx.70mins)	ND	-	ND	-	ND	-	ND	-	10,000
Te-132 (approx.78hrs)	ND	-	ND	-	ND	-	ND	-	200
I-132 (approx.2hrs)	ND	-	ND	-	ND	-	ND	-	3,000
Cs-136 (approx.13days)	ND	-	ND	-	ND	-	ND	-	300
Ba-140(approx.13days)	ND	-	ND	-	ND	-	ND	-	300
La-140 (approx. 40hrs)	ND	-	ND	-	ND	-	ND	-	400

^{*} Density by the announcement of Reactor Regulation is stated with an amount converted from Bq/cm3 to Bq/L.

The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 0.68Bq/L, Cs-134: approx. 0.93Bq/L, Cs-137: approx. 1.1Bq/L Please note that these nuclides are sometimes detected even when they are below the limits, contingent on the detector or samples.

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

Place of Sampling	3 km offsho Haramachi Wa Layer	rd Upper	3 km offsh Haramachi Wa Layei	ard Lower	3 km offshore Ward Uppel		3 km offshore Ward Lowe		3 km offsh Iwasawa shoi Layei	re Upper	3 km offsh Iwasawa sho Laye	re Lower	Density limit by the announcement of Reactor Regulation (Bg/L)
Time of Sampling	December 8 (Not samp		December 8 (Not sam)	*	December 8 (Not sam)	*	December 8 (Not sam)	-, -	December 8 8:00	,	December 8 8:00	3, 2011	(the density limit in the water outside of
Detected Nuclides (Half-life)	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	surrounding monitored areas in the section 6 of the appendix 2)
I-131 (about 8 days)	-	-	-	-	-	-	-	-	ND	-	ND	-	40
Cs-134 (about 2 years)	-	1	-	-	-	-	-	-	ND	-	ND	-	60
Cs-137 (about 30 years)	-	i	-	-	-	-	-	-	ND	-	ND	-	90
Mo-99 (approx. 66hrs)	-	-	-	-	-	-	-	-	ND	-	ND	-	1,000
Tc-99m (approx.6hrs)	-	i	-	-	-	-	-	-	ND	-	ND	-	40,000
Te-129m (approx.34days)	-	i	-	-	-	-	-	-	ND	-	ND	-	300
Te-129(approx.70mins)	-	i	-	-	-	-	-	-	ND	-	ND	-	10,000
Te-132 (approx.78hrs)	-	i	-	-	-	-	-	-	ND	-	ND	-	200
I-132 (approx.2hrs)	-	1	-	-	-	-	-	-	ND	-	ND	-	3,000
Cs-136 (approx.13days)	-	1	-	-	-	-	-	-	ND	-	ND	-	300
Ba-140(approx.13days)	-	1	-	-	-	-	-	-	ND	-	ND	-	300
La-140 (approx. 40hrs)	-	1	-	-	-	-	-	-	ND	-	ND	-	400

^{*} Density by the announcement of Reactor Regulation is stated with an amount converted from Bq/cm3 to Bq/L.

The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 0.65Bq/L, Cs-134: approx. 0.82Bq/L, Cs-137: approx. 1.0Bq/L Please note that these nuclides are sometimes detected even when they are below the limits, contingent on the detector or samples.

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

Place of Sampling	8 km offshore Ward Upper		8 km offshore Ward Lowe	r Layer	8 km offsh Iwasawa shoi Layei	re Upper	8 km offsh Iwasawa shoi Layei	re Lower					Density limit by the announcement of Reactor Regulation (Bq/L)
Time of Sampling	December 8 (Not sam)		December 8 (Not sam		December 8 8:50	3, 2011	December 8 8:50	*					(the density limit in the water outside of
Detected Nuclides (Half-life)	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor (/)	surrounding monitored areas in the section 6 of the appendix 2)
I-131 (about 8 days)	-	-	-	-	ND	-	ND	-					40
Cs-134 (about 2 years)	-	-	-	-	ND	-	ND	-					60
Cs-137 (about 30 years)	-	-	-	-	ND	-	ND	-					90
Mo-99 (approx. 66hrs)	-	-	-	-	ND	ı	ND	ı					1,000
Tc-99m (approx.6hrs)	-	-	-	-	ND	-	ND	-					40,000
Te-129m (approx.34days)	-	-	-	-	ND	-	ND	-					300
Te-129(approx.70mins)	-	-	-	-	ND	-	ND	-					10,000
Te-132 (approx.78hrs)	-	-	-	-	ND	-	ND	-					200
I-132 (approx.2hrs)	-	-	-	-	ND	-	ND	-					3,000
Cs-136 (approx.13days)	-	-	-	-	ND	-	ND	-					300
Ba-140(approx.13days)	-	-	-	-	ND	-	ND	-					300
La-140 (approx. 40hrs)	-	-	-	-	ND	-	ND	-					400

^{*} Density by the announcement of Reactor Regulation is stated with an amount converted from Bq/cm3 to Bq/L.

The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 0.67Bq/L, Cs-134: approx. 0.96Bq/L, Cs-137: approx. 1.1Bq/L Please note that these nuclides are sometimes detected even when they are below the limits, contingent on the detector or samples.

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

Place of Sampling	North of Discharg 5-6u of (approx. 30m no discharge c	1F orth of 5-6u	Around South Channel (appox. 330m s Discharge C	of 1F south of 1-4u	Around North Channel (Around 3,4u Chann (approx. 10 kn	of 2F Discharge el)	Around Iwasawa (appox. 7 km s Discharge C (appox. 16 km	outh of 1,2u channel)	Density limit by the announcement of Reactor Regulation (Bq/L)
Time of Sampling	December 1 8:45	,	December 1 8:20	,	December 1 8:00	*	December 1 7:35		(the density limit in the water outside of
Detected Nuclides (Half-life)	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor (/)	surrounding monitored areas in the section 6 of the appendix 2)
I-131 (about 8 days)	ND	-	ND	-	ND	-	ND	-	40
Cs-134 (about 2 years)	3.5	0.06	1.7	0.03	1.1	0.02	ND	1	60
Cs-137 (about 30 years)	4.1	0.05	2.3	0.03	1.4	0.02	1.2	0.01	90
Mo-99 (approx. 66hrs)	ND	-	ND	-	ND	1	ND	1	1,000
Tc-99m (approx.6hrs)	ND	-	ND	-	ND	-	ND	-	40,000
Te-129m (approx.34days)	ND	-	ND	-	ND	1	ND	1	300
Te-129(approx.70mins)	ND	-	ND	-	ND	•	ND	•	10,000
Te-132 (approx.78hrs)	ND	-	ND	-	ND	-	ND	-	200
I-132 (approx.2hrs)	ND	-	ND	-	ND	-	ND	-	3,000
Cs-136 (approx.13days)	ND	-	ND	-	ND	-	ND	-	300
Ba-140(approx.13days)	ND	-	ND	-	ND	-	ND	-	300
La-140 (approx. 40hrs)	ND	-	ND	-	ND	-	ND	-	400

^{*} Density by the announcement of Reactor Regulation is stated with an amount converted from Bq/cm3 to Bq/L.

The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 0.83Bq/L, Cs-134: approx. 0.84Bq/L Please note that these nuclides are sometimes detected even when they are below the limits, contingent on the detector or samples.

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

Place of Sampling	North of Discharg 5-6u of (approx. 30m no discharge c	1F orth of 5-6u	Around South Channel (appox. 330m s Discharge C	of 1F south of 1-4u	Around North Channel (Around 3,4u Chann (approx. 10 kn	of 2F Discharge el)	Around Iwasawa (appox. 7 km s Discharge C (appox. 16 km	outh of 1,2u Channel)	Density limit by the announcement of Reactor Regulation (Bq/L)
Time of Sampling	December 1 8:30	,	December 1 8:10	*	December 1 8:00	*	December 1 7:40	*	(the density limit in the water outside of
Detected Nuclides (Half-life)	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor (/)	surrounding monitored areas in the section 6 of the appendix 2)
I-131 (about 8 days)	ND	-	ND	-	ND	-	ND	-	40
Cs-134 (about 2 years)	2.3	0.04	2.4	0.04	ND	-	1.8	0.03	60
Cs-137 (about 30 years)	4.0	0.04	3.1	0.03	ND	-	1.7	0.02	90
Mo-99 (approx. 66hrs)	ND	-	ND	-	ND	-	ND	-	1,000
Tc-99m (approx.6hrs)	ND	-	ND	-	ND	-	ND	-	40,000
Te-129m (approx.34days)	ND	-	ND	-	ND	-	ND	-	300
Te-129(approx.70mins)	ND	-	ND	-	ND	-	ND	-	10,000
Te-132 (approx.78hrs)	ND	-	ND	-	ND	-	ND	-	200
I-132 (approx.2hrs)	ND	-	ND	-	ND	-	ND	-	3,000
Cs-136 (approx.13days)	ND	-	ND	-	ND	-	ND	-	300
Ba-140(approx.13days)	ND	-	ND	-	ND	-	ND	-	300
La-140 (approx. 40hrs)	ND	-	ND	-	ND	-	ND	-	400

^{*} Density by the announcement of Reactor Regulation is stated with an amount converted from Bq/cm3 to Bq/L.

The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 0.73Bq/L, Cs-134: approx. 0.88Bq/L, Cs-137: approx. 1.0Bq/L Please note that these nuclides are sometimes detected even when they are below the limits, contingent on the detector or samples.

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

Place of Sampling	15 km offsh Minami-So CityUpper	ouma	15 km offshore of Minami-Souma CityLower Layer N/A		15 km offsh Ukedo-gawa Layer	a Upper r	15 km offsh Ukedo-gawa Laye	a Lower r	15 km offsh Fukushima Upper La	Daiichi ayer	15 km offsh Fukushima Lower La	Daiichi ayer	Density limit by the announcement of Reactor Regulation (Bq/L)
Time of Sampling	N/A		N/A		December 1 9:45	*	December 1 9:45	,	December 1 9:00	,	December 1 9:00	0, 2011	(the density limit in the water outside of
Detected Nuclides (Half-life)	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor	surrounding monitored areas in the section 6 of the appendix 2)
I-131 (about 8 days)	-	-	-	-	ND	-	ND	-	ND	ı	ND	-	40
Cs-134 (about 2 years)	-	-	-	-	ND	-	ND	-	ND	-	0.85	0.01	60
Cs-137 (about 30 years)	-	-	-	-	ND	-	ND	-	ND	-	ND	-	90
Mo-99 (approx. 66hrs)	-	-	-	-	ND	-	ND	-	ND	-	ND	-	1,000
Tc-99m (approx.6hrs)	-	-	-	-	ND	-	ND	-	ND	1	ND	-	40,000
Te-129m (approx.34days)	-	-	-	-	ND	-	ND	-	ND	ı	ND	-	300
Te-129(approx.70mins)	-	-	-	-	ND	-	ND	-	ND	-	ND	-	10,000
Te-132 (approx.78hrs	-	-	-	-	ND	-	ND	-	ND	-	ND	-	200
I-132 (approx.2hrs)	-	-	-	-	ND	-	ND	-	ND	-	ND	-	3,000
Cs-136 (approx.13days)	-	-	-	-	ND	-	ND	-	ND	-	ND	-	300
Ba-140(approx.13days)	-	-	-	-	ND	-	ND	-	ND	1	ND	-	300
La-140 (approx. 40hrs)	-	-	-	-	ND	-	ND	-	ND	-	ND	-	400

^{*} Density by the announcement of Reactor Regulation is stated with an amount converted from Bq/cm3 to Bq/L.

The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 0.67Bq/L, Cs-134: approx. 0.91Bq/L, Cs-137: approx. 1.1Bq/L Please note that these nuclides are sometimes detected even when they are below the limits, contingent on the detector or samples.

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

Place of Sampling	approx. 15 km of Fukushim Upper La	a Daini	approx. 15 km of Fukushim Lower La	a Daini	15 km offsl Iwasawa Sho Laye	re Upper	15 km offsh Iwasawa Sho Laye	re Lower	15 km offsh Hirono-town Layei	Upper	15 km offsh Hirono-town Laye	Lower	Density limit by the announcement of Reactor Regulation (Bq/L)
Time of Sampling	December 1 8:10	0, 2011	December 1 8:10	0, 2011	N/A		N/A		N/A		N/A		(the density limit in the water outside of
Detected Nuclides (Half-life)	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor	surrounding monitored areas in the section 6 of the appendix 2)
I-131 (about 8 days)	ND	-	ND	-	-	-	-	-	-	-	-	-	40
Cs-134 (about 2 years)	ND	-	ND	-	-	-	-	-	-	-	-	-	60
Cs-137 (about 30 years)	ND	-	ND	-	-	-	-	-	-	-	-	-	90
Mo-99 (approx. 66hrs)	ND	-	ND	-	-	-	-	-	-	-	-	-	1,000
Tc-99m (approx.6hrs)	ND	-	ND	-	-	-	-	-	-	-	-	-	40,000
Te-129m (approx.34days)	ND	-	ND	-	-	-	-	-	-	-	-	-	300
Te-129(approx.70mins)	ND	-	ND	-	-	-	-	-	-	-	-	-	10,000
Te-132 (approx.78hrs)	ND	-	ND	-	-	-	-	-	-	-	-	-	200
I-132 (approx.2hrs)	ND	-	ND	-	-	-	-	-	-	-	-	-	3,000
Cs-136 (approx.13days)	ND	-	ND	-	-	-	-	-	-	-	-	-	300
Ba-140(approx.13days)	ND	-	ND	-	-	-	-	-	-	-	-	-	300
La-140 (approx. 40hrs)	ND	-	ND	-	-	-	-	-	-	-	-	-	400

^{*} Density by the announcement of Reactor Regulation is stated with an amount converted from Bq/cm3 to Bq/L.

The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 0.68Bq/L, Cs-134: approx. 0.97Bq/L, Cs-137: approx. 1.0Bq/L Please note that these nuclides are sometimes detected even when they are below the limits, contingent on the detector or samples.

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

[Definite Report] Nuclide Analysis Results of Radioactive Materials in Seawater < offshore additional survey >

Place of Sampling	3km offshor upper sid Ukedoga	le of	3km offshore sites of Fuk Daiich	ushima	3km offshore sites of Fu Daini	kushima	8km offshore sites of Ful Daiich	kushima					Density limit by the announcement of Reactor Regulation (Bq/L)
Time of Sampling	December 10:40	•	December 1 11:00	•	December 1 11:45		December 10 11:15						(the density limit in the water outside of
Detected Nuclides (Half-life)	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	surrounding monitored areas in the section 6 of the appendix 2)
I-131 (about 8 days)	ND	-	ND	-	ND	-	ND	-					40
Cs-134 (about 2 years)	ND	-	ND	-	ND	-	ND	-					60
Cs-137 (about 30 years)	ND	-	ND	-	ND	-	ND	-					90
Mo-99 (approx. 66hrs)	ND	ı	ND	-	ND	-	ND	-					1,000
Tc-99m (approx.6hrs)	ND	-	ND	-	ND	-	ND	-					40,000
Te-129m (approx.34days)	ND	-	ND	-	ND	-	ND	-					300
Te-129(approx.70mins)	ND	-	ND	-	ND	-	ND	-					10,000
Te-132 (approx.78hrs)	ND	-	ND	-	ND	-	ND	-					200
I-132 (approx.2hrs)	ND	-	ND	-	ND	-	ND	-					3,000
Cs-136 (approx.13days)	ND	-	ND	-	ND	-	ND	-					300
Ba-140(approx.13days)	ND	-	ND	-	ND	-	ND	-					300
La-140 (approx. 40hrs)	ND	-	ND	-	ND	-	ND	-					400

^{*} Density by the announcement of Reactor Regulation is stated with an amount converted from Bq/cm3 to Bq/L.

The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 0.59Bq/L, Cs-134: approx. 0.85Bq/L, Cs-137: approx. 1.0Bq/L Please note that these nuclides are sometimes detected even when they are below the limits, contingent on the detector or samples.

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

Place of Sampling	North of Discharg 5-6u of (approx. 30m no discharge c	1F orth of 5-6u	Around South Channel (appox. 330m s Discharge C	of 1F south of 1-4u	Around North Channel (Around 3,4u Chann (approx. 10 km	of 2F Discharge el)	Around Iwasawa (appox. 7 km s Discharge C (appox. 16 km	outh of 1,2u Channel)	Density limit by the announcement of Reactor Regulation (Bq/L)
Time of Sampling	December 1 8:55	*	December 1 8:25	,	December 1 8:40	•	December 1 8:15		(the density limit in the water outside of
Detected Nuclides (Half-life)	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor (/)	surrounding monitored areas in the section 6 of the appendix 2)
I-131 (about 8 days)	ND	-	ND	-	ND	-	ND	-	40
Cs-134 (about 2 years)	4.8	0.08	3.4	0.06	ND	-	ND	-	60
Cs-137 (about 30 years)	5.6	0.06	3.8	0.04	1.1	0.01	1.1	0.01	90
Mo-99 (approx. 66hrs)	ND		ND	-	ND	-	ND	-	1,000
Tc-99m (approx.6hrs)	ND		ND	-	ND	-	ND	-	40,000
Te-129m (approx.34days)	ND	-	ND	-	ND	-	ND	-	300
Te-129(approx.70mins)	ND	-	ND	-	ND	-	ND	-	10,000
Te-132 (approx.78hrs)	ND	ı	ND	-	ND	-	ND	-	200
I-132 (approx.2hrs)	ND	-	ND	-	ND	-	ND	-	3,000
Cs-136 (approx.13days)	ND	-	ND	-	ND	-	ND	-	300
Ba-140(approx.13days)	ND	-	ND	-	ND	-	ND	-	300
La-140 (approx. 40hrs)	ND	-	ND	-	ND	-	ND	-	400

^{*} Density by the announcement of Reactor Regulation is stated with an amount converted from Bq/cm3 to Bq/L.

The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 0.70Bq/L, Cs-134: approx. 0.89Bq/L Please note that these nuclides are sometimes detected even when they are below the limits, contingent on the detector or samples.

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

Place of Sampling	3 km offsh Haramachi Wa Layei	ard Upper	3 km offsh Haramachi Wa Layei	ard Lower	3 km offshore Ward Uppe		3 km offshore Ward Lowe		3 km offsh Iwasawa sho Laye	re Upper	3 km offsh Iwasawa sho Laye	re Lower	Density limit by the announcement of Reactor Regulation (Bq/L)
Time of Sampling	December 1 9:50	•	December 1 9:50	•	December 1 9:20	,	December 1 9:20	*	December 1 7:35	,	December 1 7:35		(the density limit in the water outside of
Detected Nuclides (Half-life)	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	surrounding monitored areas in the section 6 of the appendix 2)
I-131 (about 8 days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	40
Cs-134 (about 2 years)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	60
Cs-137 (about 30 years)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	90
Mo-99 (approx. 66hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	1,000
Tc-99m (approx.6hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	40,000
Te-129m (approx.34days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	300
Te-129(approx.70mins)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	10,000
Te-132 (approx.78hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	200
I-132 (approx.2hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	3,000
Cs-136 (approx.13days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	300
Ba-140(approx.13days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	300
La-140 (approx. 40hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	400

^{*} Density by the announcement of Reactor Regulation is stated with an amount converted from Bq/cm3 to Bq/L.

The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 0.69Bq/L, Cs-134: approx. 1.0Bq/L, Cs-137: approx. 0.97Bq/L Please note that these nuclides are sometimes detected even when they are below the limits, contingent on the detector or samples.

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

Place of Sampling	8 km offshore Ward Upper		8 km offshore Ward Lowe		8 km offsh Iwasawa shoi Layei	re Upper	8 km offsh Iwasawa shoi Laye	re Lower					Density limit by the announcement of Reactor Regulation (Bq/L)
Time of Sampling	December 1 10:20		December 1 10:20		December 1 8:00	1, 2011	December 1 8:00						(the density limit in the water outside of
Detected Nuclides (Half-life)	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor (/)	surrounding monitored areas in the section 6 of the appendix 2)
I-131 (about 8 days)	ND	-	ND	-	ND	-	ND	-					40
Cs-134 (about 2 years)	ND	-	ND	-	ND	-	ND	-					60
Cs-137 (about 30 years)	ND	-	ND	-	ND	-	ND	-					90
Mo-99 (approx. 66hrs)	ND	-	ND	-	ND	-	ND	-					1,000
Tc-99m (approx.6hrs)	ND	-	ND	-	ND	-	ND	-					40,000
Te-129m (approx.34days)	ND	-	ND	-	ND	-	ND	-					300
Te-129(approx.70mins)	ND	-	ND	-	ND	-	ND	-					10,000
Te-132 (approx.78hrs)	ND	-	ND	-	ND	-	ND	-					200
I-132 (approx.2hrs)	ND	-	ND	-	ND	-	ND	-					3,000
Cs-136 (approx.13days)	ND	-	ND	-	ND	-	ND	-					300
Ba-140(approx.13days)	ND	-	ND	-	ND	-	ND	-					300
La-140 (approx. 40hrs)	ND	-	ND	-	ND	-	ND	-					400

^{*} Density by the announcement of Reactor Regulation is stated with an amount converted from Bq/cm3 to Bq/L.

The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 0.72Bq/L, Cs-134: approx. 0.81Bq/L, Cs-137: approx. 1.0Bq/L Please note that these nuclides are sometimes detected even when they are below the limits, contingent on the detector or samples.

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

Place of Sampling	North of Discharg 5-6u of (approx. 30m n discharge c	1F orth of 5-6u	Around South Channel (appox. 330m s Discharge C	of 1F south of 1-4u	Around North Channel (Around 3,4u Chann (approx. 10 km	of 2F Discharge iel)	Around Iwasawa (appox. 7 km s Discharge C (appox. 16 km	south of 1,2u Channel)	Density limit by the announcement of Reactor Regulation (Bq/L)
Time of Sampling	December 1 8:45		December 1 8:20		December 1 8:25		December 1 8:00		(the density limit in the water outside of
Detected Nuclides (Half-life)	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor (/)	surrounding monitored areas in the section 6 of the appendix 2)
I-131 (about 8 days)	ND	-	ND	-	ND	-	ND	-	40
Cs-134 (about 2 years)	5.0	0.08	2.5	0.04	ND	-	ND	-	60
Cs-137 (about 30 years)	6.3	0.07	2.8	0.03	1.3	0.01	ND	-	90
Mo-99 (approx. 66hrs)	ND	-	ND	-	ND	-	ND	-	1,000
Tc-99m (approx.6hrs)	ND	-	ND	-	ND	-	ND	-	40,000
Te-129m (approx.34days)	ND	-	ND	-	ND	-	ND	-	300
Te-129(approx.70mins)	ND	-	ND	-	ND	-	ND	-	10,000
Te-132 (approx.78hrs)	ND	-	ND	-	ND	-	ND	-	200
I-132 (approx.2hrs)	ND	-	ND	-	ND	-	ND	-	3,000
Cs-136 (approx.13days)	ND	-	ND	-	ND	-	ND	-	300
Ba-140(approx.13days)	ND	-	ND	-	ND	-	ND	-	300
La-140 (approx. 40hrs)	ND	-	ND	-	ND	-	ND	-	400

^{*} Density by the announcement of Reactor Regulation is stated with an amount converted from Bq/cm3 to Bq/L.

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 0.80Bq/L, Cs-134: approx. 0.96Bq/L, Cs-137: approx. 0.89Bq/L Please note that these nuclides are sometimes detected even when they are below the limits, contingent on the detector or samples.

Place of Sampling	3 km offsh Haramachi Wa Layei	ard Upper	3 km offsh Haramachi Wa Laye	ard Lower	3 km offshore Ward Uppe		3 km offshore Ward Lowe		3 km offsh Iwasawa shoi Layei	e Upper	3 km offsh Iwasawa sho Laye	re Lower	Density limit by the announcement of Reactor Regulation (Bg/L)
Time of Sampling	December 1: 10:15	•	December 1 10:15	,	December 1 10:00	,	December 1 10:00	•	December 1 8:10	2, 2011	December 1 8:10	*	(the density limit in the water outside of
Detected Nuclides (Half-life)	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	surrounding monitored areas in the section 6 of the appendix 2)
I-131 (about 8 days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	40
Cs-134 (about 2 years)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	60
Cs-137 (about 30 years)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	90
Mo-99 (approx. 66hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	1,000
Tc-99m (approx.6hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	40,000
Te-129m (approx.34days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	300
Te-129(approx.70mins)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	10,000
Te-132 (approx.78hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	200
I-132 (approx.2hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	3,000
Cs-136 (approx.13days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	300
Ba-140(approx.13days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	300
La-140 (approx. 40hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	400

^{*} Density by the announcement of Reactor Regulation is stated with an amount converted from Bq/cm3 to Bq/L.

The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 0.66Bq/L, Cs-134: approx. 0.91Bq/L, Cs-137: approx. 1.0Bq/L Please note that these nuclides are sometimes detected even when they are below the limits, contingent on the detector or samples.

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

Place of Sampling	8 km offshore Ward Uppe		8 km offshore Ward Lowe		8 km offsh Iwasawa shoi Layei	re Upper	8 km offsho Iwasawa shor Layer	re Lower					Density limit by the announcement of Reactor Regulation (Bq/L)
Time of Sampling	December 1 9:40	,	December 1 9:40	,	December 1. 8:30		December 1: 8:30						(the density limit in the water outside of
Detected Nuclides (Half-life)	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor	surrounding monitored areas in the section 6 of the appendix 2)
I-131 (about 8 days)	ND	-	ND	-	ND	-	ND	-					40
Cs-134 (about 2 years)	ND	-	ND	-	ND	-	ND	-					60
Cs-137 (about 30 years)	ND	-	ND	-	ND	-	ND	-					90
Mo-99 (approx. 66hrs)	ND	-	ND	-	ND	-	ND	-					1,000
Tc-99m (approx.6hrs)	ND	-	ND	-	ND	-	ND	-					40,000
Te-129m (approx.34days)	ND	-	ND	-	ND	-	ND	-					300
Te-129(approx.70mins)	ND	-	ND	-	ND	-	ND	-					10,000
Te-132 (approx.78hrs)	ND	-	ND	-	ND	-	ND	-					200
I-132 (approx.2hrs)	ND	-	ND	-	ND	-	ND	-					3,000
Cs-136 (approx.13days)	ND	-	ND	-	ND	-	ND	-					300
Ba-140(approx.13days)	ND	-	ND	-	ND	-	ND	-					300
La-140 (approx. 40hrs)	ND	-	ND	-	ND	-	ND	-					400

^{*} Density by the announcement of Reactor Regulation is stated with an amount converted from Bq/cm3 to Bq/L.

The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 0.68Bq/L, Cs-134: approx. 0.89Bq/L, Cs-137: approx. 1.0Bq/L Please note that these nuclides are sometimes detected even when they are below the limits, contingent on the detector or samples.

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

Place of Sampling	3 km offshore of Iwaki Uppe		3 km offshore of Iwaki Low		3 km offshore river Upper		3 km offshore river Lower		3 km offsho Onahama po Layei	rt Upper	3 km offsh Onahama po Layel	rt Lower	Density limit by the announcement of Reactor Regulation (Bq/L)
Time of Sampling	December 1 5:50	2, 2011	December 1 5:50	2, 2011	December 1 6:10		December 1 6:10	2, 2011	December 1: 6:10	2, 2011	December 1 6:10		(the density limit in the water outside of
Detected Nuclides (Half-life)	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor	surrounding monitored areas in the section 6 of the appendix 2)
I-131 (about 8 days)	ND	-	ND	-	ND	-	ND	1	ND	-	ND	-	40
Cs-134 (about 2 years)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	60
Cs-137 (about 30 years)	ND	i	ND	-	ND	-	ND	ı	ND	ı	ND	-	90
Mo-99 (approx. 66hrs)	ND	i	ND	-	ND	-	ND	i	ND	ı	ND	-	1,000
Tc-99m (approx.6hrs)	ND	i	ND	-	ND	-	ND	i	ND	ı	ND	-	40,000
Te-129m (approx.34days)	ND	i	ND	-	ND	-	ND	i	ND	ı	ND	-	300
Te-129(approx.70mins)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	10,000
Te-132 (approx.78hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	200
I-132 (approx.2hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	3,000
Cs-136 (approx.13days)	ND	-	ND	-	ND	-	ND	1	ND	-	ND	-	300
Ba-140(approx.13days)	ND	1	ND	-	ND	-	ND	1	ND	1	ND	-	300
La-140 (approx. 40hrs)	ND	ı	ND	-	ND	-	ND	ı	ND	1	ND	-	400

^{*} Density by the announcement of Reactor Regulation is stated with an amount converted from Bq/cm3 to Bq/L.

The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 0.63Bq/L, Cs-134: approx. 0.87Bq/L, Cs-137: approx. 1.1Bq/L Please note that these nuclides are sometimes detected even when they are below the limits, contingent on the detector or samples.

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

Place of Sampling	3 km offshore Upper La		3 km offshore Lower La		3 km offsh Numanouch Laye	i Upper	3 km offsh Numanouch Layer	i Lower	3 km offsh Toyoma Upp		3 km offsh Toyoma Low		Density limit by the announcement of Reactor Regulation (Bq/L)
Time of Sampling	December 1: 6:30	*	December 1 6:30	*	December 1 6:25	,	December 1: 6:25	,	December 1: 6:40	2, 2011	December 1: 6:40	•	(the density limit in the water outside of
Detected Nuclides (Half-life)	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	surrounding monitored areas in the section 6 of the appendix 2)
I-131 (about 8 days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	40
Cs-134 (about 2 years)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	60
Cs-137 (about 30 years)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	90
Mo-99 (approx. 66hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	1,000
Tc-99m (approx.6hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	40,000
Te-129m (approx.34days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	300
Te-129(approx.70mins)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	10,000
Te-132 (approx.78hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	200
I-132 (approx.2hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	3,000
Cs-136 (approx.13days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	300
Ba-140(approx.13days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	300
La-140 (approx. 40hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	400

^{*} Density by the announcement of Reactor Regulation is stated with an amount converted from Bq/cm3 to Bq/L.

The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 0.70Bq/L, Cs-134: approx. 0.94Bq/L, Cs-137: approx. 0.99Bq/L Please note that these nuclides are sometimes detected even when they are below the limits, contingent on the detector or samples.

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

Place of Sampling	North of Discharg 5-6u of (approx. 30m no discharge c	1F orth of 5-6u	Around South Channel (appox. 330m s Discharge C	of 1F south of 1-4u	Around North Channel (Around 3,4u Chann (approx. 10 kn	of 2F Discharge el)	Around Iwasawa (appox. 7 km s Discharge C (appox. 16 km	outh of 1,2u Channel)	Density limit by the announcement of Reactor Regulation (Bq/L)
Time of Sampling	December 1 9:00		December 1 8:40		December 1 8:20		December 1 7:55		(the density limit in the water outside of
Detected Nuclides (Half-life)	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor (/)	surrounding monitored areas in the section 6 of the appendix 2)
I-131 (about 8 days)	ND	-	ND	-	ND	-	ND	-	40
Cs-134 (about 2 years)	2.9	0.05	2.0	0.03	0.89	0.01	ND	-	60
Cs-137 (about 30 years)	3.3	0.04	2.0	0.02	1.3	0.01	1.2	0.01	90
Mo-99 (approx. 66hrs)	ND	-	ND	-	ND	-	ND	-	1,000
Tc-99m (approx.6hrs)	ND	-	ND	-	ND	-	ND	-	40,000
Te-129m (approx.34days)	ND	-	ND	-	ND	-	ND	-	300
Te-129(approx.70mins)	ND	-	ND	-	ND	-	ND	-	10,000
Te-132 (approx.78hrs)	ND	•	ND	-	ND	-	ND	-	200
I-132 (approx.2hrs)	ND	-	ND	-	ND	-	ND	-	3,000
Cs-136 (approx.13days)	ND	-	ND	-	ND	-	ND	-	300
Ba-140(approx.13days)	ND	-	ND	-	ND	-	ND	-	300
La-140 (approx. 40hrs)	ND	-	ND	-	ND	-	ND	-	400

^{*} Density by the announcement of Reactor Regulation is stated with an amount converted from Bq/cm3 to Bq/L.

The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 0.69Bq/L, Cs-134: approx. 0.94Bq/L Please note that these nuclides are sometimes detected even when they are below the limits, contingent on the detector or samples.

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

Place of Sampling	15 km offsh Minami-So CityUpper	ouma	15 km offsh Minami-So CityLower	ouma	15 km offsh Ukedo-gawa Laye	u Upper	15 km offsh Ukedo-gawa Layer	Lower	15 km offsh Fukushima Upper La	Daiichi	15 km offsh Fukushima Lower La	Daiichi	Density limit by the announcement of Reactor Regulation (Bq/L)
Time of Sampling	N/A		N/A		December 1 (Not sam	,	December 1: (Not sam)		December 1: (Not samp	,	December 1 (Not sam	*	(the density limit in the water outside of
Detected Nuclides (Half-life)	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor	surrounding monitored areas in the section 6 of the appendix 2)
I-131 (about 8 days)	-	-	-	-	-	-	-	-	-	-	-	-	40
Cs-134 (about 2 years)	-	-	-	-	-	-	1	-	-	-	-	-	60
Cs-137 (about 30 years)	-	-	-	-	-	-	1	-	-	-	-	-	90
Mo-99 (approx. 66hrs)	-	-	-	-	-	-	-	-	-	-	-	-	1,000
Tc-99m (approx.6hrs)	-	-	-	-	-	-	-	-	-	-	-	-	40,000
Te-129m (approx.34days)	-	-	-	-	-	-	-	-	-	-	-	-	300
Te-129(approx.70mins)	-	-	-	-	-	-	-	-	-	-	-	-	10,000
Te-132 (approx.78hrs)	-	-	-	-	-	-	-	-	-		-	-	200
I-132 (approx.2hrs)	-	-	-	-	-	-	-	-	-		-	-	3,000
Cs-136 (approx.13days)	-	-	-	-	-	-	-	-	-	-	-	-	300
Ba-140(approx.13days)	-	-	-	-	-	-	-	-	-	-	-	-	300
La-140 (approx. 40hrs)	-	-	-	-	-	-	-	-	-	-	-	-	400

^{*} Density by the announcement of Reactor Regulation is stated with an amount converted from Bq/cm3 to Bq/L.

Place of Sampling	approx. 15 km of Fukushim Upper La	a Daini	approx. 15 km of Fukushim Lower La	a Daini	15 km offsh Iwasawa Sho Laye	re Upper	15 km offsh Iwasawa Sho Laye	re Lower	15 km offsh Hirono-town Layer	Upper	15 km offsh Hirono-town Layer	Lower	Density limit by the announcement of Reactor Regulation (Bq/L)
Time of Sampling	December 1 (Not sam	•	December 1 (Not sam	*	N/A		N/A		N/A		N/A		(the density limit in the water outside of
Detected Nuclides (Half-life)	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor	surrounding monitored areas in the section 6 of the appendix 2)
I-131 (about 8 days)	-	-	-	-	-	-	-	-	-	-	-	-	40
Cs-134 (about 2 years)	-	-	-	-	-	-	-	-	-	-	-	-	60
Cs-137 (about 30 years)	-	-	-	-	-	-	-	-	-	-	-	-	90
Mo-99 (approx. 66hrs)	-	-	-	ı	-	-	-	-	-	-	-	-	1,000
Tc-99m (approx.6hrs)	-	-	-	-	-	-	-	-	-	-	-	-	40,000
Te-129m (approx.34days)	-	-	-	-	-	-	-	-	-	-	-	-	300
Te-129(approx.70mins)	-	-	-	-	-	-	-	-	-	-	-	-	10,000
Te-132 (approx.78hrs)	-	-	-	-	-	-	-	-	-	-	-	-	200
I-132 (approx.2hrs)	-	-	-	-	-	-	-	-	-	-	-	-	3,000
Cs-136 (approx.13days)	-	-	-	-	-	-	-	-	-	-	-	-	300
Ba-140(approx.13days)	-	-	-	-	-	-	-	-	-	-	-	-	300
La-140 (approx. 40hrs)	-	-	-	-	-	-	-	-	-	-	-	-	400

^{*} Density by the announcement of Reactor Regulation is stated with an amount converted from Bq/cm3 to Bq/L.

Place of Sampling	3 km offsh Souma City Layer	Upper	3 km offsh Souma City Laye	Lower	5 km offsh Souma City Laye	Upper	5 km offsh Souma City Layer	Lower	5 km offsh Kashima Upp		5 km offsh Kashima Low		Density limit by the announcement of Reactor Regulation (Bq/L)
Time of Sampling	December 1: (Not sam)	•	December 1 (Not sam	,	December 1 (Not sam	*	December 1: (Not sam)		December 1: (Not sam)	•	December 1 (Not sam	*	(the density limit in the water outside of
Detected Nuclides (Half-life)	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor (/)	surrounding monitored areas in the section 6 of the appendix 2)
I-131 (about 8 days)	-	-	-	-	-	-	-	-	-	-	-	-	40
Cs-134 (about 2 years)	-	-	-	-	-	-	-	-	-	i	-	-	60
Cs-137 (about 30 years)	-	-	-	-	-	-	-	-	-	ı	-	-	90
Mo-99 (approx. 66hrs)	-	-	-	-	-	-	-	-	-	ı	-	-	1,000
Tc-99m (approx.6hrs)	-	-	-	-	-	-	-	ı	-	i	-	-	40,000
Te-129m (approx.34days)	-	-	-	-	-	-	-	ı	-	i	-	-	300
Te-129(approx.70mins)	-	-	-	-	-	-	-	ı	-	i	-	-	10,000
Te-132 (approx.78hrs)	-	-	-	-	-	-	-	ı	-	i	-	-	200
I-132 (approx.2hrs)	-	-	-	-	-	-	-	ı	-	i	-	-	3,000
Cs-136 (approx.13days)	-	-	-	-	-	-	-	ı	-	i	-	-	300
Ba-140(approx.13days)	-	-	-	-	-	-	-	-	-	i	-	-	300
La-140 (approx. 40hrs)	-	-	-	-	-	-	-	-	-	i	-	-	400

^{*} Density by the announcement of Reactor Regulation is stated with an amount converted from Bq/cm3 to Bq/L.

Place of Sampling Time of Sampling	5km Offsho Numanouch Layer December 1: 6:50	i Upper r 3, 2011	5km Offsho Numanouch Layer December 1: 6:50	i Lower r 3, 2011									Density limit by the announcement of Reactor Regulation (Bq/L) (the density limit in the water outside of
Detected Nuclides (Half-life)	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	surrounding monitored areas in the section 6 of the appendix 2)
I-131 (about 8 days)	ND	-	ND	-									40
Cs-134 (about 2 years)	ND	-	ND	-									60
Cs-137 (about 30 years)	ND	-	ND	-									90
Mo-99 (approx. 66hrs)	ND	-	ND	-									1,000
Tc-99m (approx.6hrs)	ND	-	ND	-									40,000
Te-129m (approx.34days)	ND	-	ND	-									300
Te-129(approx.70mins)	ND	-	ND	-									10,000
Te-132 (approx.78hrs)	ND	-	ND	-									200
I-132 (approx.2hrs)	ND	-	ND	-									3,000
Cs-136 (approx.13days)	ND	-	ND	-									300
Ba-140(approx.13days)	ND	-	ND	-									300
La-140 (approx. 40hrs)	ND	-	ND	-									400

^{*} Density by the announcement of Reactor Regulation is stated with an amount converted from Bq/cm3 to Bq/L.

The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 0.64Bq/L, Cs-134: approx. 0.88Bq/L, Cs-137: approx. 1.0Bq/L Please note that these nuclides are sometimes detected even when they are below the limits, contingent on the detector or samples.

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

Place of Sampling	North of Discharg 5-6u of (approx. 30m n discharge c	1F orth of 5-6u	Around South Channel (appox. 330m s Discharge C	of 1F south of 1-4u	Around North Channel (Around 3,4u Chann (approx. 10 kn	of 2F Discharge el)	Around Iwasawa (appox. 7 km s Discharge C (appox. 16 km	outh of 1,2u Channel)	Density limit by the announcement of Reactor Regulation (Bq/L)
Time of Sampling	December 1 8:50		December 1 8:20		December 1 8:20		December 1 7:55		(the density limit in the water outside of
Detected Nuclides (Half-life)	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor (/)	surrounding monitored areas in the section 6 of the appendix 2)
I-131 (about 8 days)	ND	-	ND	-	ND	-	ND	-	40
Cs-134 (about 2 years)	10	0.17	1.7	0.03	ND	-	1.0	0.02	60
Cs-137 (about 30 years)	12	0.13	1.1	0.01	1.0	0.01	ND	-	90
Mo-99 (approx. 66hrs)	ND	-	ND	-	ND	-	ND	-	1,000
Tc-99m (approx.6hrs)	ND	-	ND	-	ND	-	ND	-	40,000
Te-129m (approx.34days)	ND	-	ND	-	ND	-	ND	-	300
Te-129(approx.70mins)	ND	-	ND	-	ND	-	ND	-	10,000
Te-132 (approx.78hrs)	ND	-	ND	-	ND	-	ND	-	200
I-132 (approx.2hrs)	ND	-	ND	-	ND	-	ND	-	3,000
Cs-136 (approx.13days)	ND	-	ND	-	ND	-	ND	-	300
Ba-140(approx.13days)	ND	-	ND	-	ND	-	ND	-	300
La-140 (approx. 40hrs)	ND	-	ND	-	ND	-	ND	-	400

^{*} Density by the announcement of Reactor Regulation is stated with an amount converted from Bq/cm3 to Bq/L.

The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 0.92Bq/L, Cs-134: approx. 0.87Bq/L, Cs-137: approx. 1.0Bq/L Please note that these nuclides are sometimes detected even when they are below the limits, contingent on the detector or samples.

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

[Definite Report] Nuclide Analysis Results of Radioactive Materials in Seawater < offshore 1/4 >

Place of Sampling	15 km offsh Minami-So CityUpper	ouma	15 km offsh Minami-So CityLower	ouma	15 km offsh Ukedo-gawa Laye	Upper	15 km offsh Ukedo-gawa Laye	a Lower	15 km offsh Fukushima Upper La	Daiichi	15 km offsl Fukushima Lower La	Daiichi	Density limit by the announcement of Reactor Regulation (Bq/L)
Time of Sampling	December 1- 8:35	4, 2011	December 1- 8:35	,	N/A		N/A		N/A		N/A		(the density limit in the water outside of
Detected Nuclides (Half-life)	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor	surrounding monitored areas in the section 6 of the appendix 2)
I-131 (about 8 days)	ND	-	ND	-	-	-	-	-	-	-	-	-	40
Cs-134 (about 2 years)	ND	-	ND	-	-	-	-	-	-	-	-	-	60
Cs-137 (about 30 years)	ND	-	ND	-	-	-	-	-	-	-	-	-	90
Mo-99 (approx. 66hrs)	ND	-	ND	-	-	-	-	-	-	-	-	-	1,000
Tc-99m (approx.6hrs)	ND	-	ND	-	-	-	-	-	-	-	-	-	40,000
Te-129m (approx.34days)	ND	-	ND	-	-	-	-	-	-	-	-	-	300
Te-129(approx.70mins)	ND	-	ND	-	-	-	-	-	-	-	-	-	10,000
Te-132 (approx.78hrs)	ND	-	ND	-	-	-	-	-	-	-	-	-	200
I-132 (approx.2hrs)	ND	-	ND	-	-	-	-	-	-	-	-	-	3,000
Cs-136 (approx.13days)	ND	-	ND	-	-	-	-	-	-	-	-	-	300
Ba-140(approx.13days)	ND	-	ND	-	-	-	-	-	-	-	-	-	300
La-140 (approx. 40hrs)	ND	-	ND	-	-	-	-	-	-	-	-	-	400

^{*} Density by the announcement of Reactor Regulation is stated with an amount converted from Bq/cm3 to Bq/L.

The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 0.72Bq/L, Cs-134: approx. 0.86Bq/L, Cs-137: approx. 0.99Bq/L Please note that these nuclides are sometimes detected even when they are below the limits, contingent on the detector or samples.

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

[Definite Report] Nuclide Analysis Results of Radioactive Materials in Seawater < offshore 2/4 >

Place of Sampling	approx. 15 km of Fukushim Upper La	a Daini	approx. 15 km of Fukushim Lower La	a Daini	15 km offsh Iwasawa Sho Laye	re Upper	15 km offsh Iwasawa Sho Laye	re Lower	15 km offsh Hirono-town Layer	Upper	15 km offsh Hirono-town Laye	Lower	Density limit by the announcement of Reactor Regulation (Bq/L)
Time of Sampling	N/A		N/A		December 1 8:35	4, 2011	December 1 8:35	,	December 1- 9:15	,	December 1 9:15	•	(the density limit in the water outside of
Detected Nuclides (Half-life)	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor (/)	surrounding monitored areas in the section 6 of the appendix 2)
I-131 (about 8 days)	-	-	-	-	ND	1	ND	-	ND	-	ND	-	40
Cs-134 (about 2 years)	-	·	-	-	ND	ı	ND	-	ND	-	ND	-	60
Cs-137 (about 30 years)	-	-	-	-	ND	ı	ND	-	ND	-	ND	-	90
Mo-99 (approx. 66hrs)	-	-	-	-	ND	-	ND	-	ND	-	ND	-	1,000
Tc-99m (approx.6hrs)	-	-	-	-	ND	-	ND	-	ND	-	ND	-	40,000
Te-129m (approx.34days)	-	-	-	-	ND	-	ND	-	ND	-	ND	-	300
Te-129(approx.70mins)	-	-	-	-	ND	-	ND	-	ND	-	ND	-	10,000
Te-132 (approx.78hrs)	-	-	-	-	ND	-	ND	-	ND	-	ND	-	200
I-132 (approx.2hrs)	-	-	-	-	ND	-	ND	-	ND	-	ND	-	3,000
Cs-136 (approx.13days)	-	-	-	-	ND	-	ND	-	ND	-	ND	-	300
Ba-140(approx.13days)	-	-	-	-	ND	-	ND	-	ND	-	ND	-	300
La-140 (approx. 40hrs)	-	-	-	-	ND	-	ND	-	ND	-	ND	-	400

^{*} Density by the announcement of Reactor Regulation is stated with an amount converted from Bq/cm3 to Bq/L.

The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 0.53Bq/L, Cs-134: approx. 0.86Bq/L, Cs-137: approx. 1.0Bq/L Please note that these nuclides are sometimes detected even when they are below the limits, contingent on the detector or samples.

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

[Definite Report] Nuclide Analysis Results of Radioactive Materials in Seawater < offshore 3/4 >

Place of Sampling	3 km offsh Haramachi Wa Layei	ard Upper	3 km offsh Haramachi Wa Laye	ard Lower	3 km offshore Ward Uppel		3 km offshore Ward Lowe		3 km offsho Iwasawa shor Layer	e Upper	3 km offsh Iwasawa shoi Layei	re Lower	Density limit by the announcement of Reactor Regulation (Bq/L)
Time of Sampling	December 1- 9:40	,	December 1 9:40	*	December 1- 10:05	,	December 1 10:05	•	December 1- 7:45	4, 2011	December 1 7:45	4, 2011	(the density limit in the water outside of
Detected Nuclides (Half-life)	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor	surrounding monitored areas in the section 6 of the appendix 2)
I-131 (about 8 days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	40
Cs-134 (about 2 years)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	60
Cs-137 (about 30 years)	ND	-	ND	-	ND	-	ND	-	ND	i	ND	-	90
Mo-99 (approx. 66hrs)	ND	-	ND	1	ND	-	ND	-	ND	i	ND	-	1,000
Tc-99m (approx.6hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	40,000
Te-129m (approx.34days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	300
Te-129(approx.70mins)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	10,000
Te-132 (approx.78hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	200
I-132 (approx.2hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	3,000
Cs-136 (approx.13days)	ND	-	ND	-	ND	-	ND	-	ND	1	ND	-	300
Ba-140(approx.13days)	ND	-	ND	-	ND	-	ND	-	ND	1	ND	-	300
La-140 (approx. 40hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	400

^{*} Density by the announcement of Reactor Regulation is stated with an amount converted from Bq/cm3 to Bq/L.

The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 0.63Bq/L, Cs-134: approx. 0.90Bq/L, Cs-137: approx. 1.0Bq/L Please note that these nuclides are sometimes detected even when they are below the limits, contingent on the detector or samples.

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

[Definite Report] Nuclide Analysis Results of Radioactive Materials in Seawater < offshore 4/4 >

Place of Sampling	8 km offshore Ward Uppe		8 km offshore Ward Lower		8 km offsh Iwasawa sho Laye	re Upper	8 km offsh Iwasawa shoi Layei	re Lower					Density limit by the announcement of Reactor Regulation (Bq/L)
Time of Sampling	December 1 8:05	,	December 1- 8:05	4, 2011	December 1 8:05	4, 2011	December 1- 8:05	,					(the density limit in the water outside of
Detected Nuclides (Half-life)	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor (/)	surrounding monitored areas in the section 6 of the appendix 2)
I-131 (about 8 days)	ND	-	ND	-	ND	-	ND	-					40
Cs-134 (about 2 years)	ND	-	ND	-	ND	-	ND	-					60
Cs-137 (about 30 years)	ND	-	ND	-	ND	-	ND	-					90
Mo-99 (approx. 66hrs)	ND	-	ND	-	ND	-	ND	-					1,000
Tc-99m (approx.6hrs)	ND	ı	ND	ı	ND	-	ND	-					40,000
Te-129m (approx.34days)	ND	ı	ND	ı	ND	-	ND	-					300
Te-129(approx.70mins)	ND	ı	ND	ı	ND	-	ND	-					10,000
Te-132 (approx.78hrs)	ND	ı	ND	ı	ND	-	ND	-					200
I-132 (approx.2hrs)	ND	ı	ND	ı	ND	-	ND	-					3,000
Cs-136 (approx.13days)	ND	ı	ND	ı	ND	-	ND	-					300
Ba-140(approx.13days)	ND	-	ND	-	ND	-	ND	-					300
La-140 (approx. 40hrs)	ND	-	ND	-	ND	-	ND	-					400

^{*} Density by the announcement of Reactor Regulation is stated with an amount converted from Bq/cm3 to Bq/L.

The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 0.66Bq/L, Cs-134: approx. 0.89Bq/L, Cs-137: approx. 1.0Bq/L Please note that these nuclides are sometimes detected even when they are below the limits, contingent on the detector or samples.

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

[Definite Report] Fukushima Daiichi Nuclear Power Station; the shallow draft quay, Unit 1-4 screen, and the water intake canal of Units 1-4 Nuclide Analysis Results of Radioactive Materials in Seawater < 1/2 >

Place of Sampling	Shallow Draf	t Quay of 1F		water intake 's Units 1-4		nit 1 (outside the ence)		Unit 1 (inside the ence)	Screen of 1F's U	nit 2 (outside the ence)		Jnit 2 (inside the ence)	the announcement of Reactor
Time of Sampling	Dec 01 Jan 00	•	Dec 0° 7:		Dec 01 7:	1, 2011 20		1, 2011 25		1, 2011 27		1, 2011 30	Regulation (Bq/L) (the density limit in the water outside of surrounding
Detected Nuclides (Half-life)	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	monitored areas in the section 6 of the appendix 2)
I-131 (about 8 days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	40
Cs-134 (about 2 years)	ND	-	64	1.1	160	2.7	150	2.5	160	2.7	200	3.3	60
Cs-137 (about 30 years)	ND	-	88	0.98	170	1.9	200	2.2	200	2.2	260	2.9	90
Mn-54 (approx.310days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	1,000
Co-60 (approx.5yrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	200
Tc-99m (approx.6hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	40,000
Te-129m (approx.34days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	300
Te- 129(approx.70mi ns)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	10,000
Cs-136 (approx.13days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	300
Ba-140 (approx.13days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	300
La-140 (approx.40hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	400

^{*} Density by the announcement of Reactor Regulation is stated with an amount converted from Bq/cm3 to Bq/L.

The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 13Bq/L, Cs-134: approx. 21Bq/L, Cs-137: approx. 24Bq/L Please note that these nuclides are sometimes detected even when they are below the limits, contingent on the detector or samples.

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

[Definite Report] Fukushima Daiichi Nuclear Power Station; the shallow draft quay, Unit 1-4 screen, and the water intake canal of Units 1-4 Nuclide Analysis Results of Radioactive Materials in Seawater < 2/2 >

												Density limit by the announcement of Reactor
												Regulation (Bq/L) (the density limit in the water outside of surrounding
Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	monitored areas in the section 6 of the appendix 2)
ND	-	ND	-	ND	-	ND	-	ND	-			40
160	2.7	410	6.8	460	7.7	590	9.8	130	2.2			60
210	2.3	520	5.8	560	6.2	700	7.8	150	1.7			90
ND	-	ND	-	ND	-	ND	-	ND	-			1,000
ND	-	ND	-	ND	-	ND	-	ND	-			200
ND	-	ND	-	ND	-	ND	-	ND	-			40,000
ND	-	ND	-	ND	-	ND	-	ND	-			300
ND	-	ND	-	ND	-	ND	-	ND	-			10,000
ND	-	ND	-	ND	-	ND	-	ND	-			300
ND	-	ND	-	ND	-	ND	-	ND	-			300
ND	-	ND	-	ND	-	ND	-	ND	-			400
	Silt for Dec 0: 7: Density of Sample (Bq/L) ND 160 210 ND	Dec 01, 2011 7:33 Density of Sample (Bq/L) Scaling Factor (/ /) ND	Silt fence Silt fence	Silt fence Silt fence	Silt fence Silt fence Silt fence Silt fence	Silt fence Silt fence Silt fence	Silt fence Dec 01, 2011 7:38 Dec 01, 2011 7:38 Tence 01 Tence	Silt fence Sil	Silt fence Sil	Silt fence Si	Salit fence Salit fence	Salit fence Salit fence

^{*} Density by the announcement of Reactor Regulation is stated with an amount converted from Bq/cm3 to Bq/L.

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 19Bq/L

Place of Sampling		Fukushima Da	iichi Power Station, in Seawa	ater at Water Intake	Canal of Uint 5		Density limit by the announcement of Reactor Regulation (Bq/L)
Time of Sampling	Dec 01, 20 15:10	11					(the density limit in the water outside of surrounding
Detected Nuclides (Half-life)	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	monitored areas in the section 6 of the appendix 2)
I-131 (about 8 days)	ND						12:00 am
Cs-134 (about 2 years)	7.3	0.12					60
Cs-137 (about 30 years)	8.4	0.09					90
Mn-54 (approx.310days)	ND	•					1,000
Co-60 (approx.5yrs)	ND	-					200
Tc-99m (approx.6hrs)	ND	-					40,000
Te-129m (approx.34days)	ND	-					300
Te- 129(approx.70mins)	ND	-					10,000
Cs-136 (approx.13days)	ND	-					300
Ba-140 (approx.13days)	ND	-					300
La-140 (approx.40hrs)	ND	-					400

^{*} Density by the announcement of Reactor Regulation is stated with an amount converted from Bq/cm3 to Bq/L.

The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 2Bq/L

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

[Definite Report] Fukushima Daiichi Nuclear Power Station; the shallow draft quay, Unit 1-4 screen, and the water intake canal of Units 1-4 Nuclide Analysis Results of Radioactive Materials in Seawater < 1/2 >

Place of Sampling	Shallow Draf	t Quay of 1F	Inside north canal of 1F		Screen of 1F's U silt fe		Screen of 1F's U		Screen of 1F's U silt fe	nit 2 (outside the ence)	Screen of 1F's U	Jnit 2 (inside the ence)	Density limit by the announcement of Reactor
Time of Sampling	Dec 02 Jan 00		Dec 02 6:		Dec 02 6:		Dec 02 6:	2, 2011 58	Dec 02 7:		7:	Dec 02, 2011 08	Regulation (Bq/L) (the density limit in the water outside of surrounding
Detected Nuclides (Half-life)	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	monitored areas in								
I-131 (about 8 days)	ND	-	ND	-	40								
Cs-134 (about 2 years)	27	0.45	100	1.7	140	2.3	180	3.0	200	3.3	190	3.2	60
Cs-137 (about 30 years)	ND	-	130	1.4	160	1.8	200	2.2	260	2.9	260	2.9	90
Mn-54 (approx.310days)	ND	-	ND	-	ND	-	ND	-	ND	•	ND	-	1,000
Co-60 (approx.5yrs)	ND	-	ND	-	200								
Tc-99m (approx.6hrs)	ND	-	ND	-	40,000								
Te-129m (approx.34days)	ND	-	ND	-	300								
Te- 129(approx.70mins)	ND	-	ND	-	ND	-	ND	-	ND	•	ND	-	10,000
Cs-136 (approx.13days)	ND	-	ND	-	300								
Ba-140 (approx.13days)	ND	-	ND	-	300								
La-140 (approx.40hrs)	ND	-	ND	-	ND		ND	-	ND	-	ND	-	400

^{*} Density by the announcement of Reactor Regulation is stated with an amount converted from Bq/cm3 to Bq/L.

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

The detection limits of major three nuclide that are not detected are as follows:

I-131: approx. 14Bq/L, Cs-137: approx. 25Bq/L

Please note that these nuclides are sometimes detected even when they are below the limits, contingent on the detector or samples.

[Definite Report] Fukushima Daiichi Nuclear Power Station; the shallow draft quay, Unit 1-4 screen, and the water intake canal of Units 1-4 Nuclide Analysis Results of Radioactive Materials in Seawater < 2/2 >

Place of Sampling		nit 3 (outside the ence)		Unit 3 (inside the ence)	Screen of 1F's U silt fe			Unit 4 (inside the ence)	Inside the sout 1-4 Water In				Density limit by the announcement of Reactor Regulation (Bq/L)
Time of Sampling	Dec 02 7:		Dec 02 7:	2, 2011 13	Dec 02 7:			2, 2011 18	Dec 02 7::				(the density limit in the water outside of surrounding
Detected Nuclides (Half-life)	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	monitored areas in the section 6 of the appendix 2)
I-131 (about 8 days)	ND	-	ND	-	ND	-	ND	-	ND	-			40
Cs-134 (about 2 years)	180	3.0	430	7.2	290	4.8	570	9.5	320	5.3			60
Cs-137 (about 30 years)	270	3.0	520	5.8	360	4.0	760	8.4	390	4.3			90
Mn-54 (approx.310days)	ND	-	ND	-	ND	-	ND	-	ND	-			1,000
Co-60 (approx.5yrs)	ND	-	ND	-	ND	-	ND	-	ND	-			200
Tc-99m (approx.6hrs)	ND	-	ND	-	ND	-	ND	-	ND	-			40,000
Te-129m (approx.34days)	ND	-	ND	-	ND	-	ND	-	ND	-			300
Te- 129(approx.70min s)	ND	-	ND	-	ND	-	ND	-	ND	-			10,000
Cs-136 (approx.13days)	ND	-	ND	-	ND	-	ND	-	ND	-			300
Ba-140 (approx.13days)	ND	-	ND	-	ND	-	ND	-	ND	-			300
La-140 (approx.40hrs)	ND	-	ND	-	ND	-	ND	-	ND	-			400

^{*} Density by the announcement of Reactor Regulation is stated with an amount converted from Bq/cm3 to Bq/L.

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 19Bq/L

Place of Sampling			iichi Power Station, in Seaw	ater at Water Intake	Canal of Uint 5		Density limit by the announcement of Reactor Regulation (Bq/L)
Time of Sampling	Dec 02, 20 15:25)11					(the density limit in the water outside of surrounding
Detected Nuclides (Half-life)	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	monitored areas in the section 6 of the appendix 2)
I-131 (about 8 days)	ND	-					12:00 am
Cs-134 (about 2 years)	7.5	0.13					60
Cs-137 (about 30 years)	10	0.11					90
Mn-54 (approx.310days)	ND	-					1,000
Co-60 (approx.5yrs)	ND	-					200
Tc-99m (approx.6hrs)	ND	-					40,000
Te-129m (approx.34days)	ND	-					300
Te- 129(approx.70mins)	ND	-					10,000
Cs-136 (approx.13days)	ND	-					300
Ba-140 (approx.13days)	ND	-					300
La-140 (approx.40hrs)	ND	-					400

^{*} Density by the announcement of Reactor Regulation is stated with an amount converted from Bq/cm3 to Bq/L.

The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 3Bq/L

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

[Definite Report] Fukushima Daiichi Nuclear Power Station; the shallow draft quay, Unit 1-4 screen, and the water intake canal of Units 1-4 Nuclide Analysis Results of Radioactive Materials in Seawater < 1/2 >

Place of Sampling	Shallow Draf	t Quay of 1F	Inside north canal of 1F			nit 1 (outside the ence)		Jnit 1 (inside the ence)	Screen of 1F's U silt fe			Jnit 2 (inside the ence)	the announcement of Reactor
Time of Sampling	Dec 03 Jan 00	'	Dec 03 6:	*	Dec 03		Dec 03 7:	•	Dec 03			3, 2011 08	Regulation (Bq/L) (the density limit in the water outside of surrounding
Detected Nuclides (Half-life)	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	monitored areas in the section 6 of the appendix 2)
I-131 (about 8 days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	40
Cs-134 (about 2 years)	23	0.38	87	1.5	150	2.5	200	3.3	150	2.5	210	3.5	60
Cs-137 (about 30 years)	35	0.39	140	1.6	200	2.2	240	2.7	180	2.0	230	2.6	90
Mn-54 (approx.310days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	1,000
Co-60 (approx.5yrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	200
Tc-99m (approx.6hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	40,000
Te-129m (approx.34days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	300
Te- 129(approx.70mi ns)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	10,000
Cs-136 (approx.13days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	300
Ba-140 (approx.13days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	300
La-140 (approx.40hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	400

^{*} Density by the announcement of Reactor Regulation is stated with an amount converted from Bq/cm3 to Bq/L.

The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 19Bq/L

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

[Definite Report] Fukushima Daiichi Nuclear Power Station; the shallow draft quay, Unit 1-4 screen, and the water intake canal of Units 1-4 Nuclide Analysis Results of Radioactive Materials in Seawater < 2/2 >

Place of Sampling	Screen of 1F's U	nit 3 (outside the ence)	Screen of 1F's U	Init 3 (inside the ence)	Screen of 1F's Un	nit 4 (outside the ence)	Screen of 1F's U	Jnit 4 (inside the ence)	Inside the sout 1-4 Water Ir	h of 1F's Units ntake Canal			Density limit by the announcement of Reactor
Time of Sampling	Dec 03	•	Dec 03	•	Dec 03	•	Dec 03 7:	3, 2011 18	Dec 03				Regulation (Bq/L) (the density limit in the water outside of surrounding
Detected Nuclides (Half-life)	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	monitored areas in the section 6 of the appendix 2)
I-131 (about 8 days)	ND	-	ND	-	ND	-	ND	-	ND	-			40
Cs-134 (about 2 years)	160	2.7	470	7.8	150	2.5	540	9.0	57	0.95			60
Cs-137 (about 30 years)	210	2.3	570	6.3	210	2.3	680	7.6	55	0.61			90
Mn-54 (approx.310day s)	ND	-	ND	-	ND	-	ND	-	ND	-			1,000
Co-60 (approx.5yrs)	ND	-	ND	-	ND	-	ND	-	ND	-			200
Tc-99m (approx.6hrs)	ND	-	ND	-	ND	-	ND	-	ND	-			40,000
Te-129m (approx.34days)	ND	-	ND	-	ND	-	ND	-	ND	-			300
Te- 129(approx.70m ins)	ND	-	ND	-	ND	-	ND	-	ND	-			10,000
Cs-136 (approx.13days)	ND	-	ND	-	ND	-	ND	-	ND	-			300
Ba-140 (approx.13days)	ND	-	ND	-	ND	-	ND	-	ND	-			300
La-140 (approx.40hrs)	ND	-	ND	-	ND	-	ND	-	ND	-			400

^{*} Density by the announcement of Reactor Regulation is stated with an amount converted from Bg/cm3 to Bg/L.

The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 19Bq/L

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

[Definite Report] Fukushima Daiichi Power Station, Nuclide Analysis Results of Radioactive Materials in Seawater at Water Intake Canal of Unit 5 & 6

Jan 01, 1900			Density limit by the announcement of Reactor				
Time of Sampling	Dec 03, 20 Jan 00, 19						Regulation (Bq/L) (the density limit in the water outside of surrounding
Detected Nuclides (Half-life)	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	monitored areas in the section 6 of the appendix 2)
I-131 (about 8 days)	ND	-					12:00 am
Cs-134 (about 2 years)	ND	-					60
Cs-137 (about 30 years)	ND	-					90
Mn-54 (approx.310days)	ND	-					1,000
Co-60 (approx.5yrs)	ND	-					200
Tc-99m (approx.6hrs)	ND	-					40,000
Te-129m (approx.34days)	ND	-					300
Te- 129(approx.70min s)	ND	-					10,000
Cs-136 (approx.13days)	ND	-					300
Ba-140 (approx.13days)	ND	-					300
La-140 (approx.40hrs)	ND	-					400

^{*} Density by the announcement of Reactor Regulation is stated with an amount converted from Bq/cm3 to Bq/L.

The detection limits of major three nuclide that are not detected are as follows:

I-131: approx. 2Bq/L, Cs-134: approx. 5Bq/L, Cs-137: approx. 6Bq/L

Please note that these nuclides are sometimes detected even when they are below the limits, contingent on the detector or samples.

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

[Definite Report] Fukushima Daiichi Nuclear Power Station; the shallow draft quay, Unit 1-4 screen, and the water intake canal of Units 1-4 Nuclide Analysis Results of Radioactive Materials in Seawater < 1/2 >

Place of Sampling	Shallow Draf	t Quay of 1F	Inside north canal of 1F			nit 1 (outside the ence)	Screen of 1F's U		Screen of 1F's U silt fe		the Screen of 1F's Unit 2 (inside the silt fence)		Density limit by the announcement of Reactor
Time of Sampling	Dec 04 Jan 00		Dec 04 6:		Dec 04 7:		Dec 04 7:		Dec 04 7:	•	Dec 04 7:		Regulation (Bq/L) (the density limit in the water outside of surrounding
Detected Nuclides (Half-life)	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	monitored areas in
I-131 (about 8 days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	40
Cs-134 (about 2 years)	ND	-	52	0.87	97	1.6	82	1.4	77	1.3	110	1.8	60
Cs-137 (about 30 years)	ND	-	62	0.69	99	1.1	88	0.98	93	1.0	120	1.3	90
Mn-54 (approx.310days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	1,000
Co-60 (approx.5yrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	200
Tc-99m (approx.6hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	40,000
Te-129m (approx.34days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	300
Te- 129(approx.70min s)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	10,000
Cs-136 (approx.13days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	300
Ba-140 (approx.13days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	300
La-140 (approx.40hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	400

^{*} Density by the announcement of Reactor Regulation is stated with an amount converted from Bq/cm3 to Bq/L.

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 12Bq/L, Cs-134: approx. 21Bq/L, Cs-137: approx. 24Bq/L Please note that these nuclides are sometimes detected even when they are below the limits, contingent on the detector or samples.

[Definite Report] Fukushima Daiichi Nuclear Power Station; the shallow draft quay, Unit 1-4 screen, and the water intake canal of Units 1-4 Nuclide Analysis Results of Radioactive Materials in Seawater < 2/2 >

Place of Sampling	Screen of 1F's Ur silt fe		Screen of 1F's U		Screen of 1F's U			Jnit 4 (inside the ence)	Inside the sout 1-4 Water In				Density limit by the announcement of Reactor
Time of Sampling	Dec 04 7:		Dec 04 7:		Dec 04		Dec 04 7:	4, 2011 25	Dec 04 7:				Regulation (Bq/L) (the density limit in the water outside of surrounding
Detected Nuclides (Half-life)	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	monitored areas in						
I-131 (about 8 days)	ND	-	ND	-	ND	-	ND	-	ND	-			40
Cs-134 (about 2 years)	120	2.0	170	2.8	330	5.5	600	10	95	1.6			60
Cs-137 (about 30 years)	150	1.7	240	2.7	430	4.8	810	9.0	91	1.0			90
Mn-54 (approx.310days)	ND	-	ND	-	ND	-	ND	-	ND	-			1,000
Co-60 (approx.5yrs)	ND	-	ND	-	ND	-	ND	-	ND	-			200
Tc-99m (approx.6hrs)	ND	-	ND	-	ND	-	ND	-	ND	-			40,000
Te-129m (approx.34days)	ND	-	ND	-	ND	-	ND	-	ND	-			300
Te- 129(approx.70min s)	ND	-	ND	-	ND	-	ND	-	ND	-			10,000
Cs-136 (approx.13days)	ND	-	ND	-	ND	-	ND	-	ND	-			300
Ba-140 (approx.13days)	ND	-	ND	-	ND	-	ND	-	ND	-			300
La-140 (approx.40hrs)	ND	-	ND	-	ND	- David	ND	-	ND	-			400

^{*} Density by the announcement of Reactor Regulation is stated with an amount converted from Bq/cm3 to Bq/L.

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 22Bq/L

Place of Sampling Time of Sampling	Dec 04, 20 15:00	Fukushima Daiichi Power Station, in Seawater at Water Intake Canal of Uint 5 Dec 04, 2011 15:00										
Detected Nuclides (Half-life)	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	surrounding monitored areas in the section 6 of the appendix 2)					
I-131 (about 8 days)	ND	-					12:00 am					
Cs-134 (about 2 years)	6.7	0.11					60					
Cs-137 (about 30 years)	9.5	0.11					90					
Mn-54 (approx.310days)	ND	-					1,000					
Co-60 (approx.5yrs)	ND	-					200					
Tc-99m (approx.6hrs)	ND	-					40,000					
Te-129m (approx.34days)	ND	-					300					
Te- 129(approx.70mins)	ND	-					10,000					
Cs-136 (approx.13days)	ND	-					300					
Ba-140 (approx.13days)	ND	-					300					
La-140 (approx.40hrs)	ND	-					400					

^{*} Density by the announcement of Reactor Regulation is stated with an amount converted from Bq/cm3 to Bq/L.

The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 2Bq/L

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

[Definite Report] Fukushima Daiichi Nuclear Power Station; the shallow draft quay, Unit 1-4 screen, and the water intake canal of Units 1-4 Nuclide Analysis Results of Radioactive Materials in Seawater< 1/2>

Place of Sampling	Shallow Draf	ft Quay of 1F	Inside north wa of 1F's L		Screen of 1F's the silt	. (Screen of 1F's U silt fe		Screen of 1F's the silt		Screen of 1F's Unit 2 (inside the silt fence)		the announcement of Reactor
Time of Sampling	Dec 05 Jan 00	*	Dec 05		Dec 05		Dec 05	5, 2011 23	Dec 05		7:		Regulation (Bq/L) (the density limit in the water outside of surrounding
Detected Nuclides (Half-life)	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	monitored areas in the section 6 of the appendix 2)								
I-131 (about 8 days)	ND	-	ND	-	40								
Cs-134 (about 2 years)	25	0.42	61	1.0	110	1.8	120	2.0	62	1.0	160	2.7	60
Cs-137 (about 30 years)	40	0.44	89	0.99	140	1.6	150	1.7	110	1.2	260	2.9	90
Mn-54 (approx.310days)	ND	-	ND	-	ND	-	ND	-	ND	1	ND	-	1,000
Co-60 (approx.5yrs)	ND	-	ND	-	ND	-	ND	-	ND	•	ND	-	200
Tc-99m (approx.6hrs)	ND	-	ND	-	ND	-	ND	-	ND	•	ND	-	40,000
Te-129m (approx.34days)	ND	-	ND	-	300								
Te- 129(approx.70mins)	ND	-	ND	-	10,000								
Cs-136 (approx.13days)	ND	-	ND	-	300								
Ba-140 (approx.13days)	ND	-	ND	-	300								
La-140 (approx.40hrs)	ND ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	400

^{*} Density by the announcement of Reactor Regulation is stated with an amount converted from Bq/cm3 to Bq/L.

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 15Bq/L

[Definite Report] Fukushima Daiichi Nuclear Power Station; the shallow draft quay, Unit 1-4 screen, and the water intake canal of Units 1-4 Nuclide Analysis Results of Radioactive Materials in Seawater < 2/2 >

Place of Sampling		nit 3 (outside the ence)	Screen of 1F's L silt fe			Init 4 (outside the ence)		Unit 4 (inside the ence)	Inside the sout 1-4 Water I	th of 1F's Units ntake Canal			Density limit by the announcement of Reactor
Time of Sampling	Dec 05 7:	,	Dec 05	,		5, 2011 34	Dec 05 7:	5, 2011 36		5, 2011 38			Regulation (Bq/L) (the density limit in the water outside of surrounding
Detected Nuclides (Half-life)	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	monitored areas in
I-131 (about 8 days)	ND	-	ND	-	ND	-	ND	-	ND	-			40
Cs-134 (about 2 years)	170	2.8	290	4.8	340	5.7	390	6.5	190	3.2			60
Cs-137 (about 30 years)	200	2.2	370	4.1	430	4.8	490	5.4	210	2.3			90
Mn-54 (approx.310days)	ND	-	ND	-	ND	-	ND	-	ND	-			1,000
Co-60 (approx.5yrs)	ND	-	ND	-	ND	-	ND	-	ND	-			200
Tc-99m (approx.6hrs)	ND	-	ND	-	ND	-	ND	-	ND	-			40,000
Te-129m (approx.34days)	ND	-	ND	-	ND	-	ND	-	ND	-			300
Te- 129(approx.70mins)	ND	-	ND	-	ND	-	ND	-	ND	-			10,000
Cs-136 (approx.13days)	ND	-	ND	-	ND	-	ND	-	ND	-			300
Ba-140 (approx.13days)	ND	-	ND	-	ND	-	ND	-	ND	-			300
La-140 (approx.40hrs)	ND	-	ND	-	ND	-	ND	-	ND	-			400

^{*} Density by the announcement of Reactor Regulation is stated with an amount converted from Bq/cm3 to Bq/L.

The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 17Bq/L

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

[Definite Report] Fukushima Daiichi Nuclear Power Station; the shallow draft quay, Unit 1-4 screen, and the water intake canal of Units 1-4 Nuclide Analysis Results of Radioactive Materials in Seawater < 1/2 >

Place of Sampling	Shallow Dra	ft Quay of 1F	Inside north wa of 1F's U		Screen of 1F's U	nit 1 (outside the ence)		Unit 1 (inside the ence)		nit 2 (outside the ence)	the Screen of 1F's Unit 2 (inside the silt fence)		Density limit by the announcement of Reactor
Time of Sampling	Dec 06 Jan 00	5, 2011), 1900	Dec 06	,	Dec 06	5, 2011 47		6, 2011 50	Dec 06:	5, 2011 52		6, 2011 54	Regulation (Bq/L) (the density limit in the water outside of surrounding
Detected Nuclides (Half-life)	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	monitored areas in
I-131 (about 8 days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	40
Cs-134 (about 2 years)	ND	-	ND	-	50	0.83	100	1.7	64	1.1	190	3.2	60
Cs-137 (about 30 years)	ND	-	47	0.52	64	0.71	130	1.4	89	0.99	230	2.6	90
Mn-54 (approx.310days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	1,000
Co-60 (approx.5yrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	200
Tc-99m (approx.6hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	40,000
Te-129m (approx.34days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	300
Te- 129(approx.70mins)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	10,000
Cs-136 (approx.13days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	300
Ba-140 (approx.13days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	300
La-140 (approx.40hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	400

^{*} Density by the announcement of Reactor Regulation is stated with an amount converted from Bq/cm3 to Bq/L.

The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 15Bq/L, Cs-134: approx. 24Bq/L, Cs-137: approx. 26Bq/L Please note that these nuclides are sometimes detected even when they are below the limits, contingent on the detector or samples.

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

Place of Sampling			Density limit by the announcement of Reactor Regulation (Bq/L)				
Time of Sampling	Dec 05, 20 15:00)11					(the density limit in the water outside of surrounding
Detected Nuclides (Half-life)	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	monitored areas in the section 6 of the appendix 2)
I-131 (about 8 days)	ND	-					12:00 am
Cs-134 (about 2 years)	13	0.22					60
Cs-137 (about 30 years)	18	0.20					90
Mn-54 (approx.310days)	ND	-					1,000
Co-60 (approx.5yrs)	ND	-					200
Tc-99m (approx.6hrs)	ND	-					40,000
Te-129m (approx.34days)	ND	-					300
Te-129(approx.70mins)	ND	-					10,000
Cs-136 (approx.13days)	ND	-					300
Ba-140 (approx.13days)	ND	-					300
La-140 (approx.40hrs)	ND	-					400

^{*} Density by the announcement of Reactor Regulation is stated with an amount converted from Bq/cm3 to Bq/L.

The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 2Bq/L

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

[Definite Report] Fukushima Daiichi Nuclear Power Station; the shallow draft quay, Unit 1-4 screen, and the water intake canal of Units 1-4 Nuclide Analysis Results of Radioactive Materials in Seawater< 2/2>

Place of Sampling	Screen of 1F's the silt		Screen of 1F's U			Unit 4 (outside fence)	Screen of 1F's U		Inside the sou 1-4 Water I	th of 1F's Units ntake Canal			Density limit by the announcement of Reactor
Time of Sampling	Dec 06	5, 2011 57	Dec 06		Dec 06 6:		Dec 06	5, 2011 59	Dec 06 7:				Regulation (Bq/L) (the density limit in the water outside of surrounding
Detected Nuclides (Half-life)	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	monitored areas in the section 6 of the appendix 2)
I-131 (about 8 days)	ND	-	ND	-	ND	-	ND	-	ND	-			40
Cs-134 (about 2 years)	110	1.8	280	4.7	140	2.3	350	5.8	150	2.5			60
Cs-137 (about 30 years)	140	1.6	360	4.0	180	2.0	370	4.1	220	2.4			90
Mn-54 (approx.310days)	ND	-	ND	-	ND	-	ND	-	ND	-			1,000
Co-60 (approx.5yrs)	ND	-	ND	-	ND	-	ND	-	ND	-			200
Tc-99m (approx.6hrs)	ND	-	ND	-	ND	-	ND	-	ND	-			40,000
Te-129m (approx.34days)	ND	-	ND	-	ND	-	ND	-	ND	-			300
Te- 129(approx.70mins)	ND	-	ND	-	ND	-	ND	-	ND	-			10,000
Cs-136 (approx.13days)	ND	-	ND	-	ND	-	ND	-	ND	-			300
Ba-140 (approx.13days)	ND	-	ND	-	ND	-	ND	-	ND	-			300
La-140 (approx.40hrs)	ND	-	ND	-	ND	-	ND	-	ND	-			400

^{*} Density by the announcement of Reactor Regulation is stated with an amount converted from Bq/cm3 to Bq/L.

The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 16Bq/L

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

[Definite Report] Fukushima Daiichi Nuclear Power Station; the shallow draft quay, Unit 1-4 screen, and the water intake canal of Units 1-4 Nuclide Analysis Results of Radioactive Materials in Seawater < 1/2 >

Shallow Dra	ft Quay of 1F									ne Screen of 1F's Unit 2 (inside the silt fence)		Density limit by the announcement of Reactor
	,		,		,		,		,		,	Regulation (Bq/L) (the density limit in the water outside of surrounding
Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	monitored areas in
ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	40
ND	-	ND	-	38	0.63	73	1.2	110	1.8	170	2.8	60
34	0.38	47	0.52	50	0.56	89	0.99	140	1.6	200	2.2	90
ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	1,000
ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	200
ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	40,000
ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	300
ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	10,000
ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	300
ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	300
ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	400
	Dec 0: Jan 00 Density of Sample (Bq/L) ND ND ND ND ND ND ND ND ND N	Sample (Bq/L) Scaling Factor (/) ND - ND - 34 0.38 ND - ND -	Dec 07, 2011	Dec 07, 2011	Dec Of Pick Color Co	Dec 07, 2011						

^{*} Density by the announcement of Reactor Regulation is stated with an amount converted from Bq/cm3 to Bq/L.

The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 13Bq/L, Cs-134: approx. 24Bq/L

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

[Definite Report] Fukushima Daiichi Nuclear Power Station; the shallow draft quay, Unit 1-4 screen, and the water intake canal of Units 1-4 Nuclide Analysis Results of Radioactive Materials in Seawater < 2/2 >

												Density limit by the announcement of Reactor
												Regulation (Bq/L) (the density limit in the water outside of surrounding
Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	monitored areas in
ND	-	ND	-	ND	-	ND	-	ND	-			40
140	2.3	320	5.3	190	3.2	320	5.3	170	2.8			60
190	2.1	420	4.7	220	2.4	430	4.8	220	2.4			90
ND	-	ND	-	ND	-	ND	-	ND	-			1,000
ND	-	ND	-	ND	-	ND	-	ND	-			200
ND	-	ND	-	ND	-	ND	-	ND	-			40,000
ND	-	ND	-	ND	-	ND	-	ND	-			300
ND	-	ND	-	ND	-	ND	-	ND	-			10,000
ND	-	ND	-	ND	-	ND	-	ND	-			300
ND	-	ND	-	ND	-	ND	-	ND	-			300
ND	-	ND	-	ND	-	ND	-	ND	-			400
	Dec 0: 7: Density of Sample (Bq/L) ND 140 190 ND	Dec 07, 2011 7:10 Density of Sample (Bq/L)	Silt fence Silt fence Silt fence	Silt fence Silt fence	silt fence) silt fence) silt fence) Dec 07, 2011 7:10 Dec 07, 2011 7:12 Dec 00 7:2011 7:12 Dec 00 7:2	Silt fence Sil	Silt fence Sil	Silt fence Sil	Silt fence Sil	Silt fence Si	Silt fence Sil	Salit fence Salit fence

^{*} Density by the announcement of Reactor Regulation is stated with an amount converted from Bq/cm3 to Bq/L.

The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 15Bq/L

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

[Definite Report] Fukushima Daiichi Nuclear Power Station; the shallow draft quay, Unit 1-4 screen, and the water intake canal of Units 1-4 Nuclide Analysis Results of Radioactive Materials in Seawater < 1/2 >

Shallow Draf	ft Quay of 1F											Density limit by the announcement of Reactor
												Regulation (Bq/L) (the density limit in the water outside of surrounding
Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	monitored areas in
ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	40
ND	-	58	0.97	49	0.82	72	1.2	110	1.8	170	2.8	60
ND	-	60	0.67	84	0.93	85	0.94	130	1.4	210	2.3	90
ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	1,000
ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	200
ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	40,000
ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	300
ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	10,000
ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	300
ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	300
ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	400
	Dec 08 Jan 00 Density of Sample (Bq/L) ND	Sample (Bq/L) Scaling Factor (/) ND - ND -	Dec 08, 2011	Dec 08, 2011	Shallow Draft Quay of 1F canal of 1F's Units 1-4 silt fe Dec 08, 2011 Jan 00, 1900 Dec 08, 2011 6:47 Dec 06 6: Density of Sample (Bq/L) Scaling Factor (J) Density of Sample (Bq/L) ND - ND - ND ND - ND - ND	Shallow Draft Quay of 1F canal of 1F's Units 1-4 silt fence) Dec 08, 2011 Jan 00, 1900 Dec 08, 2011 6:47 Dec 08, 2011 6:53 Density of Sample (Bq/L) Scaling Factor (Lag)	Dec 08, 2011	Dec 08, 2011	Dec 08, 2011	Dec 08, 2011 Dec	Dec 08, 2011	Dec 08, 2011

^{*} Density by the announcement of Reactor Regulation is stated with an amount converted from Bq/cm3 to Bq/L.

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 16Bq/L, Cs-134: approx. 22Bq/L, Cs-137: approx. 26Bq/L Please note that these nuclides are sometimes detected even when they are below the limits, contingent on the detector or samples.

[Definite Report] Fukushima Daiichi Nuclear Power Station; the shallow draft quay, Unit 1-4 screen, and the water intake canal of Units 1-4 Nuclide Analysis Results of Radioactive Materials in Seawater< 2/2>

Place of Sampling	Screen of 1F's the silt	,	Screen of 1F's U		Screen of 1F's the silt		Screen of 1F's L silt fe			th of 1F's Units ntake Canal			Density limit by the announcement of Reactor
Time of Sampling	Dec 08 7:		Dec 08 7:		Dec 08 7:	3, 2011 16	Dec 08 7:	,		3, 2011 24			Regulation (Bq/L) (the density limit in the water outside of surrounding
Detected Nuclides (Half-life)	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	monitored areas in the section 6 of the appendix 2)								
I-131 (about 8 days)	ND	-			40								
Cs-134 (about 2 years)	140	2.3	520	8.7	140	2.3	310	5.2	96	1.6			60
Cs-137 (about 30 years)	180	2.0	720	8.0	210	2.3	420	4.7	130	1.4			90
Mn-54 (approx.310days)	ND	-			1,000								
Co-60 (approx.5yrs)	ND	-			200								
Tc-99m (approx.6hrs)	ND	-			40,000								
Te-129m (approx.34days)	ND	-			300								
Te- 129(approx.70mins)	ND	-			10,000								
Cs-136 (approx.13days)	ND	-			300								
Ba-140 (approx.13days)	ND	-			300								
La-140 (approx.40hrs)	ND	-			400								

^{*} Density by the announcement of Reactor Regulation is stated with an amount converted from Bq/cm3 to Bq/L.

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 20Bq/L

[Definite Report] Fukushima Daiichi Nuclear Power Station; the shallow draft quay, Unit 1-4 screen, and the water intake canal of Units 1-4 Nuclide Analysis Results of Radioactive Materials in Seawater < 1/2 >

Place of Sampling	Shallow Draf	ft Quay of 1F	Inside north wa of 1F's l		Screen of 1F's U silt fe			Unit 1 (inside the ence)		nit 2 (outside the ence)		Unit 2 (inside the ence)	the announcement of Reactor
Time of Sampling	Dec 09 6:	9, 2011 40	Dec 09 6:		Dec 09 6:			9, 2011 50	Dec 09 6:), 2011 55	6:	Dec 09, 2011 58	Regulation (Bq/L) (the density limit in the water outside of surrounding
Detected Nuclides (Half-life)	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	monitored areas in the section 6 of the appendix 2)						
I-131 (about 8 days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	40
Cs-134 (about 2 years)	ND	-	45	0.75	130	2.2	130	2.2	170	2.8	230	3.8	60
Cs-137 (about 30 years)	ND	-	43	0.48	120	1.3	180	2.0	200	2.2	250	2.8	90
Mn-54 (approx.310days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	1,000
Co-60 (approx.5yrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	200
Tc-99m (approx.6hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	40,000
Te-129m (approx.34days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	300
Te- 129(approx.70min s)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	10,000
Cs-136 (approx.13days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	300
Ba-140 (approx.13days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	300
La-140 (approx.40hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	400

^{*} Density by the announcement of Reactor Regulation is stated with an amount converted from Bq/cm3 to Bq/L.

The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 15Bq/L, Cs-134: approx. 23Bq/L, Cs-137: approx. 25Bq/L Please note that these nuclides are sometimes detected even when they are below the limits, contingent on the detector or samples.

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

[Definite Report] Fukushima Daiichi Nuclear Power Station; the shallow draft quay, Unit 1-4 screen, and the water intake canal of Units 1-4 Nuclide Analysis Results of Radioactive Materials in Seawater < 2/2 >

Place of Sampling		nit 3 (outside the ence)	Screen of 1F's U			nit 4 (outside the ence)	Screen of 1F's U		Inside the sout	th of 1F's Units			Density limit by the announcement of Reactor
Time of Sampling	Dec 09 7:		Dec 09 7:			9, 2011 09	Dec 09 7:		Dec 09 7:				Regulation (Bq/L) (the density limit in the water outside of surrounding
Detected Nuclides (Half-life)	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	monitored areas in the section 6 of the appendix 2)
I-131 (about 8 days)	ND	-	ND	-	ND	-	ND	-	ND	-			40
Cs-134 (about 2 years)	120	2.0	540	9.0	240	4.0	330	5.5	150	2.5			60
Cs-137 (about 30 years)	160	1.8	690	7.7	300	3.3	410	4.6	190	2.1			90
Mn-54 (approx.310days)	ND	-	ND	-	ND	-	ND	-	ND	-			1,000
Co-60 (approx.5yrs)	ND	-	ND	-	ND	-	ND	-	ND	-			200
Tc-99m (approx.6hrs)	ND	-	ND	-	ND	-	ND	-	ND	-			40,000
Te-129m (approx.34days)	ND	-	ND	-	ND	-	ND	-	ND	-			300
Te- 129(approx.70min s)	ND	-	ND	-	ND	-	ND	-	ND	-			10,000
Cs-136 (approx.13days)	ND	-	ND	-	ND	-	ND	-	ND	-			300
Ba-140 (approx.13days)	ND	-	ND	-	ND	-	ND	-	ND	-			300
La-140 (approx.40hrs)	ND	-	ND	-	ND	-	ND	-	ND	-			400

^{*} Density by the announcement of Reactor Regulation is stated with an amount converted from Bq/cm3 to Bq/L.

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 19Bq/L

[Definite Report] Fukushima Daiichi Nuclear Power Station; the shallow draft quay, Unit 1-4 screen, and the water intake canal of Units 1-4 Nuclide Analysis Results of Radioactive Materials in Seawater < 1/2 >

Place of Sampling	Shallow Draf	ft Quay of 1F	Inside north canal of 1F		Screen of 1F's U silt fe	nit 1 (outside the ence)		Jnit 1 (inside the ence)	Screen of 1F's U silt fe		Screen of 1F's U	Jnit 2 (inside the ence)	Density limit by the announcement of Reactor
Time of Sampling	Dec 10 Jan 00		Dec 10 7::		Dec 10 7::		Dec 10 7:), 2011 33	Dec 10 7:	*	Dec 10 7:	*	Regulation (Bq/L) (the density limit in the water outside of surrounding
Detected Nuclides (Half-life)	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	monitored areas in the section 6 of the appendix 2)
I-131 (about 8 days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	40
Cs-134 (about 2 years)	31	0.52	36	0.60	130	2.2	150	2.5	170	2.8	180	3.0	60
Cs-137 (about 30 years)	37	0.41	54	0.60	150	1.7	200	2.2	240	2.7	240	2.7	90
Mn-54 (approx.310days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	1,000
Co-60 (approx.5yrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	200
Tc-99m (approx.6hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	40,000
Te-129m (approx.34days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	300
Te- 129(approx.70min s)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	10,000
Cs-136 (approx.13days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	300
Ba-140 (approx.13days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	300
La-140 (approx.40hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	400

^{*} Density by the announcement of Reactor Regulation is stated with an amount converted from Bq/cm3 to Bq/L.

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 14Bq/L

[Definite Report] Fukushima Daiichi Nuclear Power Station; the shallow draft quay, Unit 1-4 screen, and the water intake canal of Units 1-4 Nuclide Analysis Results of Radioactive Materials in Seawater < 2/2 >

Place of Sampling		Init 3 (outside the ence)	Screen of 1F's L silt fe			nit 4 (outside the ence)		Unit 4 (inside the ence)		th of 1F's Units ntake Canal			Density limit by the announcement of Reactor
Time of Sampling	Dec 10 7:), 2011 47	Dec 10	,	Dec 10 7:), 2011 47	Dec 10 7:	0, 2011 50		0, 2011 55			Regulation (Bq/L) (the density limit in the water outside of surrounding
Detected Nuclides (Half-life)	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	monitored areas in
I-131 (about 8 days)	ND	-	ND	-	ND	-	ND	-	ND	-			40
Cs-134 (about 2 years)	160	2.7	380	6.3	530	8.8	260	4.3	110	1.8			60
Cs-137 (about 30 years)	190	2.1	420	4.7	670	7.4	320	3.6	150	1.7			90
Mn-54 (approx.310days)	ND	-	ND	-	ND	-	ND	-	ND	-			1,000
Co-60 (approx.5yrs)	ND	-	ND	-	ND	-	ND	-	ND	-			200
Tc-99m (approx.6hrs)	ND	-	ND	-	ND	-	ND	-	ND	-			40,000
Te-129m (approx.34days)	ND	-	ND	-	ND	-	ND	-	ND	-			300
Te- 129(approx.70mins)	ND	-	ND	-	ND	-	ND	-	ND	-			10,000
Cs-136 (approx.13days)	ND	-	ND	-	ND	-	ND	-	ND	-			300
Ba-140 (approx.13days)	ND	-	ND	-	ND	-	ND	-	ND	-			300
La-140 (approx.40hrs)	ND	-	ND	-	ND	-	ND	-	ND	-			400

^{*} Density by the announcement of Reactor Regulation is stated with an amount converted from Bq/cm3 to Bq/L.

The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 21Bq/L

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

[Definite Report] Fukushima Daiichi Nuclear Power Station; the shallow draft quay, Unit 1-4 screen, and the water intake canal of Units 1-4 Nuclide Analysis Results of Radioactive Materials in Seawater < 1/2 >

Place of Sampling	Shallow Dra	ft Quay of 1F	Inside north canal of 1F	water intake 's Units 1-4		nit 1 (outside the ence)	Screen of 1F's U		Screen of 1F's U	nit 2 (outside the ence)		Jnit 2 (inside the ence)	the announcement of Reactor
Time of Sampling	Dec 11 6:	I, 2011 41		1, 2011 46		1, 2011 50	Dec 11 6:	I, 2011 52	Dec 11 6:		Dec 11 6:	1, 2011 59	Regulation (Bq/L) (the density limit in the water outside of surrounding
Detected Nuclides (Half-life)	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	monitored areas in the section 6 of the appendix 2)
I-131 (about 8 days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	40
Cs-134 (about 2 years)	ND	-	59	0.98	160	2.7	130	2.2	160	2.7	160	2.7	60
Cs-137 (about 30 years)	37	0.41	45	0.50	190	2.1	160	1.8	190	2.1	200	2.2	90
Mn-54 (approx.310days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	1,000
Co-60 (approx.5yrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	200
Tc-99m (approx.6hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	40,000
Te-129m (approx.34days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	300
Te- 129(approx.70min s)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	10,000
Cs-136 (approx.13days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	300
Ba-140 (approx.13days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	300
La-140 (approx.40hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	400

^{*} Density by the announcement of Reactor Regulation is stated with an amount converted from Bq/cm3 to Bq/L.

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 19Bq/L, Cs-134: approx. 24Bq/L Please note that these nuclides are sometimes detected even when they are below the limits, contingent on the detector or samples.

[Definite Report] Fukushima Daiichi Nuclear Power Station; the shallow draft quay, Unit 1-4 screen, and the water intake canal of Units 1-4 Nuclide Analysis Results of Radioactive Materials in Seawater < 2/2 >

Place of Sampling		nit 3 (outside the ence)		Unit 3 (inside the ence)		nit 4 (outside the ence)		Unit 4 (inside the ence)	Inside the sout	th of 1F's Units ntake Canal			Density limit by the announcement of Reactor
Time of Sampling	Dec 11 7:	1, 2011 04		I, 2011 06		1, 2011 09		1, 2011 12		1, 2011 15			Regulation (Bq/L) (the density limit in the water outside of surrounding
Detected Nuclides (Half-life)	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	monitored areas in the section 6 of the appendix 2)								
I-131 (about 8 days)	ND	-			40								
Cs-134 (about 2 years)	130	2.2	410	6.8	150	2.5	240	4.0	97	1.6			60
Cs-137 (about 30 years)	160	1.8	570	6.3	170	1.9	320	3.6	110	1.2			90
Mn-54 (approx.310days)	ND	-			1,000								
Co-60 (approx.5yrs)	ND	-			200								
Tc-99m (approx.6hrs)	ND	-			40,000								
Te-129m (approx.34days)	ND	-			300								
Te- 129(approx.70min s)	ND	-			10,000								
Cs-136 (approx.13days)	ND	-			300								
Ba-140 (approx.13days)	ND	-			300								
La-140 (approx.40hrs)	ND	-			400								

^{*} Density by the announcement of Reactor Regulation is stated with an amount converted from Bq/cm3 to Bq/L.

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 16Bq/L

[Definite Report] Fukushima Daiichi Nuclear Power Station; the shallow draft quay, Unit 1-4 screen, and the water intake canal of Units 1-4 Nuclide Analysis Results of Radioactive Materials in Seawater< 1/2>

Place of Sampling	Shallow Dra	ft Quay of 1F	Inside north wa of 1F's L			Unit 1 (outside fence)	Screen of 1F's U	Unit 1 (inside the ence)	Screen of 1F's the silt			Jnit 2 (inside the ence)	the announcement of Reactor
Time of Sampling	Dec 12 6:	2, 2011 45	Dec 12 6:		Dec 12 6:	2, 2011 56		2, 2011 59	Dec 12 7:		7:	Dec 12, 2011	Regulation (Bq/L) (the density limit in the water outside of surrounding
Detected Nuclides (Half-life)	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	monitored areas in the section 6 of the appendix 2)
I-131 (about 8 days)	ND	-	ND	1	ND	-	ND	-	ND	-	ND	-	40
Cs-134 (about 2 years)	ND	-	66	1.1	110	1.8	120	2.0	120	2.0	140	2.3	60
Cs-137 (about 30 years)	ND	-	79	0.88	140	1.6	170	1.9	140	1.6	180	2.0	90
Mn-54 (approx.310days)	ND	-	ND	1	ND	-	ND	-	ND	-	ND	-	1,000
Co-60 (approx.5yrs)	ND	-	ND	ı	ND	-	ND	-	ND	-	ND	-	200
Tc-99m (approx.6hrs)	ND	-	ND	ı	ND	-	ND	-	ND	-	ND	-	40,000
Te-129m (approx.34days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	300
Te- 129(approx.70mins)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	10,000
Cs-136 (approx.13days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	300
Ba-140 (approx.13days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	300
La-140 (approx.40hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	400

^{*} Density by the announcement of Reactor Regulation is stated with an amount converted from Bq/cm3 to Bq/L.

The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 13Bq/L, Cs-134: approx. 22Bq/L, Cs-137: approx. 26Bq/L Please note that these nuclides are sometimes detected even when they are below the limits, contingent on the detector or samples.

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

[Definite Report] Fukushima Daiichi Nuclear Power Station; the shallow draft quay, Unit 1-4 screen, and the water intake canal of Units 1-4 Nuclide Analysis Results of Radioactive Materials in Seawater < 2/2 >

Place of Sampling		nit 3 (outside the ence)	Screen of 1F's U		Screen of 1F's U	nit 4 (outside the ence)		Unit 4 (inside the ence)		th of 1F's Units ntake Canal			Density limit by the announcement of Reactor Regulation (Bq/L)
Time of Sampling	Dec 12 7:	2, 2011 08	Dec 12 7:	,	Dec 12 7:	2, 2011 12		2, 2011 :15		2, 2011 19			(the density limit in the water outside of surrounding
Detected Nuclides (Half-life)	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	monitored areas in
I-131 (about 8 days)	ND	-	ND	-	ND	-	ND	-	ND	-			40
Cs-134 (about 2 years)	270	4.5	470	7.8	150	2.5	270	4.5	150	2.5			60
Cs-137 (about 30 years)	330	3.7	610	6.8	200	2.2	310	3.4	180	2.0			90
Mn-54 (approx.310days)	ND	-	ND	-	ND	-	ND	-	ND	-			1,000
Co-60 (approx.5yrs)	ND	-	ND	-	ND	-	ND	-	ND	-			200
Tc-99m (approx.6hrs)	ND	-	ND	-	ND	-	ND	-	ND	-			40,000
Te-129m (approx.34days)	ND	-	ND	-	ND	-	ND	-	ND	-			300
Te- 129(approx.70mins)	ND	-	ND	-	ND	-	ND	-	ND	-			10,000
Cs-136 (approx.13days)	ND	-	ND	-	ND	-	ND	-	ND	-			300
Ba-140 (approx.13days)	ND	-	ND	-	ND	-	ND	-	ND	-			300
La-140 (approx.40hrs)	ND	-	ND	-	ND	-	ND	-	ND	-			400

^{*} Density by the announcement of Reactor Regulation is stated with an amount converted from Bq/cm3 to Bq/L.

The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 18Bq/L

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

[Definite Report] Fukushima Daiichi Nuclear Power Station; the shallow draft quay, Unit 1-4 screen, and the water intake canal of Units 1-4 Nuclide Analysis Results of Radioactive Materials in Seawater < 1/2 >

Place of Sampling	Shallow Draf	it Quay of 1F	Inside north canal of 1F		Screen of 1F's U silt fe		Screen of 1F's U	Unit 1 (inside the ence)	Screen of 1F's U silt fe		Screen of 1F's U	Jnit 2 (inside the ence)	Density limit by the announcement of Reactor
Time of Sampling	Dec 13 Jan 00		Dec 13 6:		Dec 13		Dec 13	3, 2011 55	Dec 13			3, 2011 04	Regulation (Bq/L) (the density limit in the water outside of surrounding
Detected Nuclides (Half-life)	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	monitored areas in						
I-131 (about 8 days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	40
Cs-134 (about 2 years)	ND	-	56	0.93	91	1.5	110	1.8	110	1.8	120	2.0	60
Cs-137 (about 30 years)	ND	-	90	1.0	110	1.2	190	2.1	130	1.4	130	1.4	90
Mn-54 (approx.310days)	ND	-	ND	-	ND	-	ND	-	ND	•	ND	-	1,000
Co-60 (approx.5yrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	200
Tc-99m (approx.6hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	40,000
Te-129m (approx.34days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	300
Te- 129(approx.70mins)	ND	-	ND	-	ND	-	ND	-	ND	1	ND	-	10,000
Cs-136 (approx.13days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	300
Ba-140 (approx.13days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	300
La-140 (approx.40hrs)	ND	-	ND	-	ND		ND	-	ND	-	ND	-	400

^{*} Density by the announcement of Reactor Regulation is stated with an amount converted from Bq/cm3 to Bq/L.

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 13Bq/L, Cs-134: approx. 21Bq/L, Cs-137: approx. 25Bq/L Please note that these nuclides are sometimes detected even when they are below the limits, contingent on the detector or samples.

[Definite Report] Fukushima Daiichi Nuclear Power Station; the shallow draft quay, Unit 1-4 screen, and the water intake canal of Units 1-4 Nuclide Analysis Results of Radioactive Materials in Seawater < 2/2 >

												_
												Density limit by the announcement of Reactor
									,			Regulation (Bq/L) (the density limit in the water outside of surrounding
Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	monitored areas in
ND	-	ND	-	ND	-	ND	-	ND	-			40
170	2.8	390	6.5	150	2.5	230	3.8	94	1.6			60
210	2.3	490	5.4	190	2.1	280	3.1	130	1.4			90
ND	-	ND	-	ND	-	ND	-	ND	-			1,000
ND	-	ND	-	ND	-	ND	-	ND	-			200
ND	-	ND	-	ND	-	ND	-	ND	-			40,000
ND	-	ND	-	ND	-	ND	-	ND	-			300
ND	-	ND	-	ND	-	ND	-	ND	-			10,000
ND	-	ND	-	ND	-	ND	-	ND	-			300
ND	-	ND	-	ND	-	ND	-	ND	-			300
ND	-	ND	-	ND	-	ND	-	ND	-			400
	Dec 1: 7: Density of Sample (Bq/L) ND 170 210 ND	Silt fence Dec 13, 2011 7:10	Silt fence Silt fence	Silt fence Silt fence	Silt fence Dec 13, 2011 7:13 Dec 13, 2011 Dec 14, 2012 Density of Sample (Bq/L) Density of Sample (Bq/L)	Silt fence Silt fence Silt fence Silt fence	Silt fence Sil	Silt fence Sil	Silt fence Sil	Silt fence Sil	Salit fence Salit fence	Silt fence Sil

^{*} Density by the announcement of Reactor Regulation is stated with an amount converted from Bq/cm3 to Bq/L.

The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 17Bq/L

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

[Definite Report] Fukushima Daiichi Nuclear Power Station; the shallow draft quay, Unit 1-4 screen, and the water intake canal of Units 1-4 Nuclide Analysis Results of Radioactive Materials in Seawater < 1/2 >

Place of Sampling	Shallow Dra	ft Quay of 1F	Inside north canal of 1F			nit 1 (outside the ence)		Jnit 1 (inside the ence)		nit 2 (outside the ence)		Unit 2 (inside the ence)	the announcement of Reactor
Time of Sampling		4, 2011), 1900	Dec 14 7:		Dec 14 7:	1, 2011 07		4, 2011 09	Dec 14 7:	1, 2011 15		4, 2011 17	Regulation (Bq/L) (the density limit in the water outside of surrounding
Detected Nuclides (Half-life)	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	monitored areas in the section 6 of the appendix 2)
I-131 (about 8 days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	40
Cs-134 (about 2 years)	ND	-	35	0.58	62	1.0	100	1.7	100	1.7	140	2.3	60
Cs-137 (about 30 years)	ND	-	32	0.36	86	0.96	150	1.7	130	1.4	170	1.9	90
Mn-54 (approx.310days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	1,000
Co-60 (approx.5yrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	200
Tc-99m (approx.6hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	40,000
Te-129m (approx.34days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	300
Te- 129(approx.70min s)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	10,000
Cs-136 (approx.13days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	300
Ba-140 (approx.13days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	300
La-140 (approx.40hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	400

^{*} Density by the announcement of Reactor Regulation is stated with an amount converted from Bq/cm3 to Bq/L.

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 12Bq/L, Cs-134: approx. 21Bq/L, Cs-137: approx. 25Bq/L Please note that these nuclides are sometimes detected even when they are below the limits, contingent on the detector or samples.

[Definite Report] Fukushima Daiichi Nuclear Power Station; the shallow draft quay, Unit 1-4 screen, and the water intake canal of Units 1-4 Nuclide Analysis Results of Radioactive Materials in Seawater < 2/2 >

Place of Sampling	Screen of 1F's Ur silt fe		Screen of 1F's U		Screen of 1F's Un		Screen of 1F's U		Inside the sout 1-4 Water Ir				Density limit by the announcement of Reactor
Time of Sampling	Dec 14 7:2		Dec 14		Dec 14 7:2		Dec 14 7::		Dec 14 7:				Regulation (Bq/L) (the density limit in the water outside of surrounding
Detected Nuclides (Half-life)	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	monitored areas in the section 6 of the appendix 2)						
I-131 (about 8 days)	ND	-	ND	-	ND	-	ND	-	ND	-			40
Cs-134 (about 2 years)	130	2.2	260	4.3	140	2.3	210	3.5	150	2.5			60
Cs-137 (about 30 years)	180	2.0	310	3.4	160	1.8	270	3.0	180	2.0			90
Mn-54 (approx.310days)	ND	-	ND	-	ND	-	ND	-	ND	-			1,000
Co-60 (approx.5yrs)	ND	-	ND	-	ND	-	ND	-	ND	-			200
Tc-99m (approx.6hrs)	ND	1	ND	1	ND	1	ND	-	ND	-			40,000
Te-129m (approx.34days)	ND	-	ND	-	ND	-	ND	-	ND	-			300
Te- 129(approx.70mi ns)	ND	-	ND	-	ND	-	ND	-	ND	-			10,000
Cs-136 (approx.13days)	ND	-	ND	-	ND	-	ND	-	ND	-			300
Ba-140 (approx.13days)	ND	-	ND	-	ND	-	ND	-	ND	-			300
La-140 (approx.40hrs)	ND	-	ND	-	ND	-	ND	-	ND	-			400

^{*} Density by the announcement of Reactor Regulation is stated with an amount converted from Bq/cm3 to Bq/L.

The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 15Bq/L

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

[Definite Report] Fukushima Daiichi Nuclear Power Station; the shallow draft quay, Unit 1-4 screen, and the water intake canal of Units 1-4 Nuclide Analysis Results of Radioactive Materials in Seawater < 1/2 >

Place of Sampling	Shallow Draf	ft Quay of 1F	Inside north canal of 1F		Screen of 1F's U silt fe			Jnit 1 (inside the ence)	Screen of 1F's U		Screen of 1F's U	Jnit 2 (inside the ence)	the announcement of Reactor
Time of Sampling	Dec 15 Jan 00		Dec 15 7:		Dec 15		Dec 18	5, 2011 11	Dec 15			5, 2011 18	Regulation (Bq/L) (the density limit in the water outside of surrounding
Detected Nuclides (Half-life)	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	monitored areas in the section 6 of the appendix 2)						
I-131 (about 8 days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	40
Cs-134 (about 2 years)	ND	-	58	0.97	100	1.7	90	1.5	130	2.2	160	2.7	60
Cs-137 (about 30 years)	ND	-	82	0.91	130	1.4	120	1.3	150	1.7	180	2.0	90
Mn-54 (approx.310days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	1,000
Co-60 (approx.5yrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	200
Tc-99m (approx.6hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	40,000
Te-129m (approx.34days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	300
Te- 129(approx.70mins)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	10,000
Cs-136 (approx.13days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	300
Ba-140 (approx.13days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	300
La-140 (approx.40hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	400

^{*} Density by the announcement of Reactor Regulation is stated with an amount converted from Bq/cm3 to Bq/L.

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 14Bq/L, Cs-134: approx. 22Bq/L, Cs-137: approx. 25Bq/L Please note that these nuclides are sometimes detected even when they are below the limits, contingent on the detector or samples.

[Definite Report] Fukushima Daiichi Nuclear Power Station; the shallow draft quay, Unit 1-4 screen, and the water intake canal of Units 1-4 Nuclide Analysis Results of Radioactive Materials in Seawater< 2/2>

Place of Sampling	Screen of 1F's the silt		Screen of 1F's U		Screen of 1F's the silt	Unit 4 (outside fence)	Screen of 1F's U		Inside the sou 1-4 Water I	th of 1F's Units ntake Canal			Density limit by the announcement of Reactor
Time of Sampling	Dec 15		Dec 15	5, 2011 24	Dec 19	5, 2011 27	Dec 15 7:	5, 2011 30		5, 2011 33			Regulation (Bq/L) (the density limit in the water outside of surrounding
Detected Nuclides (Half-life)	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	monitored areas in the section 6 of the appendix 2)
I-131 (about 8 days)	ND	-	ND	-	ND	-	ND	-	ND	-			40
Cs-134 (about 2 years)	110	1.8	220	3.7	170	2.8	240	4.0	170	2.8			60
Cs-137 (about 30 years)	150	1.7	300	3.3	220	2.4	300	3.3	230	2.6			90
Mn-54 (approx.310days)	ND	-	ND	-	ND	-	ND	-	ND	-			1,000
Co-60 (approx.5yrs)	ND	-	ND	-	ND	-	ND	-	ND	-			200
Tc-99m (approx.6hrs)	ND	-	ND	-	ND	-	ND	-	ND	-			40,000
Te-129m (approx.34days)	ND	-	ND	-	ND	-	ND	-	ND	-			300
Te-129(approx.70mins)	ND	-	ND	-	ND	-	ND	-	ND	-			10,000
Cs-136 (approx.13days)	ND	-	ND	-	ND	-	ND	-	ND	-			300
Ba-140 (approx.13days)	ND	-	ND	-	ND	-	ND	-	ND	-			300
La-140 (approx.40hrs)	ND	-	ND	-	ND	-	ND	-	ND	-			400

^{*} Density by the announcement of Reactor Regulation is stated with an amount converted from Bq/cm3 to Bq/L.

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 15Bq/L

Place of Sampling		Fukushima Daiichi NPS 2U sub-drain					Fukushima Daiichi NPS Deep well
Time of Sampling	December 2, 2011 9:40	December 2, 2011 9:45	December 2, 2011 9:50	December 2, 2011 9:44	December 2, 2011 9:30	December 2, 2011 9:25	December 2, 2011 9:10
Detected Nuclides (Half-life)			Den	sity of sample (Bq/	cm3)		
I-131 (about 8 days)	ND	ND	ND	ND	ND	ND	ND
Cs-134 (about 2 years)	7.5E-01	5.2E-01	ND	ND	ND	ND	ND
Cs-137 (about 30 years)	9.6E-01	7.3E-01	3.6E-02	ND	ND	ND	ND
Nb-95 (approx.35days)	ND	ND	ND	ND	ND	ND	ND
Sb-125 (approx.3yrs)	ND	ND	ND	ND	ND	ND	ND
Ag-110m (approx.250days)	ND	ND	ND	ND	ND	ND	ND
Te-129 (approx.70mins)	ND	ND	ND	ND	ND	ND	ND
Te-129m (approx.34days)	ND	ND	ND	ND	ND	ND	ND
Cs-136 (approx.13days)	ND	ND	ND	ND	ND	ND	ND
Ba-140(approx.13days)	ND	ND	ND	ND	ND	ND	ND
La-140 (approx. 40hrs)	ND	ND	ND	ND	ND	ND	ND

^{*} O.OE - O means O.O x 10-O

The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 2E-2Bq/cm3, Cs-134: approx. 2E-2Bq/cm3, Cs-137: approx. 3E-2Bq/cm3

^{* &}quot;ND" means the sampled data is below measurable limit.

Place of Sampling		Fukushima Daiichi NPS 2U sub-drain					Fukushima Daiichi NPS Deep well
Time of Sampling	December 5, 2011 9:25	December 5, 2011 9:30	December 5, 2011 9:35	December 5, 2011 9:59	December 5, 2011 9:20	December 5, 2011 9:10	December 5, 2011 8:35
Detected Nuclides (Half-life)			Den	sity of sample (Bq/	cm3)		
I-131 (about 8 days)	ND	ND	ND	ND	ND	ND	ND
Cs-134 (about 2 years)	9.8E-01	8.2E-01	3.0E-02	ND	ND	ND	ND
Cs-137 (about 30 years)	1.4E+00	1.1E+00	ND	ND	ND	ND	ND
Nb-95 (approx.35days)	ND	ND	ND	ND	ND	ND	ND
Sb-125 (approx.3yrs)	ND	ND	ND	ND	ND	ND	ND
Ag-110m (approx.250days)	ND	ND	ND	ND	ND	ND	ND
Te-129 (approx.70mins)	ND	ND	ND	ND	ND	ND	ND
Te-129m (approx.34days)	ND	ND	ND	ND	ND	ND	ND
Cs-136 (approx.13days)	ND	ND	ND	ND	ND	ND	ND
Ba-140(approx.13days)	ND	ND	ND	ND	ND	ND	ND
La-140 (approx. 40hrs)	ND	ND	ND	ND	ND	ND	ND

^{*} O.OE - O means O.O x 10-O

The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 2E-2Bq/cm3, Cs-134: approx. 2E-2Bq/cm3, Cs-137: approx. 3E-2Bq/cm3

^{* &}quot;ND" means the sampled data is below measurable limit.

Place of Sampling		Fukushima Daiichi NPS 2U sub-drain					Fukushima Daiichi NPS Deep well
Time of Sampling	December 7, 2011 9:50	December 7, 2011 10:05	December 7, 2011 10:15	December 7, 2011 9:48	December 7, 2011 9:45	December 7, 2011 9:40	December 7, 2011 9:15
Detected Nuclides (Half-life)			Den	sity of sample (Bq/	cm3)		
I-131 (about 8 days)	ND	ND	ND	ND	ND	ND	ND
Cs-134 (about 2 years)	6.8E-01	4.2E-01	2.8E-02	ND	ND	ND	ND
Cs-137 (about 30 years)	9.2E-01	5.5E-01	ND	ND	ND	ND	ND
Nb-95 (approx.35days)	ND	ND	ND	ND	ND	ND	ND
Sb-125 (approx.3yrs)	ND	ND	ND	ND	ND	ND	ND
Ag-110m (approx.250days)	ND	ND	ND	ND	ND	ND	ND
Te-129 (approx.70mins)	ND	ND	ND	ND	ND	ND	ND
Te-129m (approx.34days)	ND	ND	ND	ND	ND	ND	ND
Cs-136 (approx.13days)	ND	ND	ND	ND	ND	ND	ND
Ba-140(approx.13days)	ND	ND	ND	ND	ND	ND	ND
La-140 (approx. 40hrs)	ND	ND	ND	ND	ND	ND	ND

^{*} O.OE - O means O.O x 10-O

The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 3E-2Bq/cm3, Cs-134: approx. 2E-2Bq/cm3, Cs-137: approx. 3E-2Bq/cm3

^{* &}quot;ND" means the sampled data is below measurable limit.

Place of Sampling		Fukushima Daiichi NPS 2U sub-drain					Fukushima Daiichi NPS Deep well
Time of Sampling	December 9, 2011 9:55	December 9, 2011 10:00	December 9, 2011 10:05	December 9, 2011 9:51	December 9, 2011 9:50	December 9, 2011 9:45	December 9, 2011 9:05
Detected Nuclides (Half-life)			Den	sity of sample (Bq/	cm3)		
I-131 (about 8 days)	ND	ND	ND	ND	ND	ND	ND
Cs-134 (about 2 years)	6.6E-01	3.4E-01	2.6E-02	ND	ND	ND	ND
Cs-137 (about 30 years)	9.6E-01	4.6E-01	3.0E-02	ND	ND	ND	ND
Nb-95 (approx.35days)	ND	ND	ND	ND	ND	ND	ND
Sb-125 (approx.3yrs)	ND	ND	ND	ND	ND	ND	ND
Ag-110m (approx.250days)	ND	ND	ND	ND	ND	ND	ND
Te-129 (approx.70mins)	ND	ND	ND	ND	ND	ND	ND
Te-129m (approx.34days)	ND	ND	ND	ND	ND	ND	ND
Cs-136 (approx.13days)	ND	ND	ND	ND	ND	ND	ND
Ba-140(approx.13days)	ND	ND	ND	ND	ND	ND	ND
La-140 (approx. 40hrs)	ND	ND	ND	ND	ND	ND	ND

^{*} O.OE - O means O.O x 10-O

The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 2E-2Bq/cm3, Cs-134: approx. 2E-2Bq/cm3, Cs-137: approx. 3E-2Bq/cm3

^{* &}quot;ND" means the sampled data is below measurable limit.

Place of Sampling			Fukushima Daiichi NPS 3U sub-drain				
Time of Sampling	December 12, 2011 10:30	December 12, 2011 10:35	December 12, 2011 10:40	December 12, 2011 9:47	December 12, 2011 10:20	December 12, 2011 10:15	December 12, 2011 10:00
Detected Nuclides (Half-life)			Dens	sity of sample (Bq/	cm3)		
I-131 (about 8 days)	ND	ND	ND	ND	ND	ND	ND
Cs-134 (about 2 years)	5.6E-01	3.4E-01	ND	ND	ND	ND	ND
Cs-137 (about 30 years)	7.8E-01	4.4E-01	ND	ND	ND	ND	ND
Nb-95 (approx.35days)	ND	ND	ND	ND	ND	ND	ND
Sb-125 (approx.3yrs)	ND	ND	ND	ND	ND	ND	ND
Ag-110m (approx.250days)	ND	ND	ND	ND	ND	ND	ND
Te-129 (approx.70mins)	ND	ND	ND	ND	ND	ND	ND
Te-129m (approx.34days)	ND	ND	ND	ND	ND	ND	ND
Cs-136 (approx.13days)	ND	ND	ND	ND	ND	ND	ND
Ba-140(approx.13days)	ND	ND	ND	ND	ND	ND	ND
La-140 (approx. 40hrs)	ND	ND	ND	ND	ND	ND	ND

^{*} O.OE - O means O.O x 10-O

The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 2E-2Bq/cm3, Cs-134: approx. 2E-2Bq/cm3, Cs-137: approx. 3E-2Bq/cm3

^{* &}quot;ND" means the sampled data is below measurable limit.

Place of Sampling		Fukushima Daiichi NPS 2U sub-drain					
Time of Sampling	December 14, 2011 9:43	December 14, 2011 9:47	December 14, 2011 9:53	December 14, 2011 9:52	December 14, 2011 9:37	December 14, 2011 9:33	December 14, 2011 9:20
Detected Nuclides (Half-life)			Den	sity of sample (Bq/	cm3)		
I-131 (about 8 days)	ND	ND	ND	ND	ND	ND	ND
Cs-134 (about 2 years)	5.1E-01	3.8E-01	ND	ND	ND	ND	ND
Cs-137 (about 30 years)	6.7E-01	5.0E-01	ND	ND	ND	ND	ND
Nb-95 (approx.35days)	ND	ND	ND	ND	ND	ND	ND
Sb-125 (approx.3yrs)	ND	ND	ND	ND	ND	ND	ND
Ag-110m (approx.250days)	ND	ND	ND	ND	ND	ND	ND
Te-129 (approx.70mins)	ND	ND	ND	ND	ND	ND	ND
Te-129m (approx.34days)	ND	ND	ND	ND	ND	ND	ND
Cs-136 (approx.13days)	ND	ND	ND	ND	ND	ND	ND
Ba-140(approx.13days)	ND	ND	ND	ND	ND	ND	ND
La-140 (approx. 40hrs)	ND	ND	ND	ND	ND	ND	ND

^{*} O.OE - O means O.O x 10-O

The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 2E-2Bq/cm3, Cs-134: approx. 2E-2Bq/cm3, Cs-137: approx. 3E-2Bq/cm3

^{* &}quot;ND" means the sampled data is below measurable limit.

Place of Sampling	F1 South east of turbine building Unit 4	F1 North east of Process Main building	F1 South east of Process Main building	F1 south of Miscellaneous Solid Waste Volume Reduction Treatment Building	F1 South west of Site Banker Builidng	F1 West of Incineration Workshop Building	F1 North of Miscellaneous Solid Waste Volume Reduction Treatment Building	F1 South east of Site Banker Builidng
Time of Sampling	December 1, 2011 9:42	December 1, 2011 9:47	December 1, 2011 9:50	December 1, 2011 10:02	NA	December 1, 2011 9:59	December 1, 2011 10:07	December 1, 2011 9:55
Detected Nuclides (Half-life)				Density of sa	mple (Bq/cm3)			
I-131 (about 8 days)	ND	ND	ND	ND	-	ND	ND	ND
Cs-134 (about 2 years)	ND	ND	ND	3.4E-02	-	1.6E-01	2.7E-02	ND
Cs-137 (about 30 years)	ND	ND	ND	4.2E-02	-	1.9E-01	5.1E-02	ND
Te-129 (about 70 minutes)	ND	ND	ND	ND	-	ND	ND	ND
Te-129m (about 34 days)	ND	ND	ND	ND	-	ND	ND	ND
Cs-136 (about 13 days)	ND	ND	ND	ND	-	ND	ND	ND
Ba-140 (about 13 days)	ND	ND	ND	ND	-	ND	ND	ND

^{* 0.0}E - 0 means 0.0 x 10-0

^{*&}quot;ND" means the sampled data is below measurable limit.

The detection limits of major three nuclide that are not detected are as follows:
I-131: approx.1E-2Bq/cm3,Cs-134:approx.2E-2Bq/cm3,Cs-137: approx.3E-2Bq/cm3

Please note that these nuclides are sometimes detected even when they are below the limits, contingent on the detector or samples.

Place of Sampling	F1 South east of turbine building Unit 4	F1 North east of Process Main building	F1 South east of Process Main building	F1 south of Miscellaneous Solid Waste Volume Reduction Treatment Building	F1 South west of Site Banker Builidng	F1 West of Incineration Workshop Building	F1 North of Miscellaneous Solid Waste Volume Reduction Treatment Building	F1 South east of Site Banker Builidng			
Time of Sampling	December 2, 2011 9:44	December 2, 2011 9:52	December 2, 2011 9:56	December 2, 2011 10:09	ND	December 2, 2011 10:05	December 2, 2011 10:14	December 2, 2011 10:00			
Detected Nuclides (Half-life)		Density of sample (Bq/cm3)									
I-131 (about 8 days)	ND	ND	ND	ND	-	ND	ND	ND			
Cs-134 (about 2 years)	ND	ND	ND	ND	-	2.1E-01	ND	ND			
Cs-137 (about 30 years)	ND	ND	ND	2.8E-02	-	2.4E-01	4.7E-02	ND			
Te-129 (about 70 minutes)	ND	ND	ND	ND	-	ND	ND	ND			
Te-129m (about 34 days)	ND	ND	ND	ND	-	ND	ND	ND			
Cs-136 (about 13 days)	ND	ND	ND	ND	-	ND	ND	ND			
Ba-140 (about 13 days)	ND	ND	ND	ND	-	ND	ND	ND			

^{* 0.0}E - 0 means 0.0 x 10-0

^{*&}quot;ND" means the sampled data is below measurable limit.

The detection limits of major three nuclide that are not detected are as follows:
I-131: approx.1E-2Bq/cm3,Cs-134:approx.2E-2Bq/cm3,Cs-137: approx.2E-2Bq/cm3

Please note that these nuclides are sometimes detected even when they are below the limits, contingent on the detector or samples.

Place of Sampling	F1 South east of turbine building Unit 4	F1 North east of Process Main building	F1 South east of Process Main building	F1 south of Miscellaneous Solid Waste Volume Reduction Treatment Building	F1 South west of Site Banker Builidng	F1 West of Incineration Workshop Building	F1 North of Miscellaneous Solid Waste Volume Reduction Treatment Building	F1 South east of Site Banker Builidng
Time of Sampling	December 3, 2011 9:23	December 3, 2011 9:28	December 3, 2011 9:31	December 3, 2011 9:42	ND	December 3, 2011 9:39	December 3, 2011 9:47	December 3, 2011 9:35
Detected Nuclides (Half-life)				Density of sa	mple(Bq/cm3)			
I-131 (about 8 days)	ND	ND	ND	ND	-	ND	ND	ND
Cs-134 (about 2 years)	ND	ND	ND	ND	-	2.2E-01	2.5E-02	ND
Cs-137 (about 30 years)	ND	ND	ND	3.1E-02	-	2.7E-01	ND	ND
Te-129 (about 70 minutes)	ND	ND	ND	ND	-	ND	ND	ND
Te-129m (about 34 days)	ND	ND	ND	ND	-	ND	ND	ND
Cs-136 (about 13 days)	ND	ND	ND	ND	-	ND	ND	ND
Ba-140 (about 13 days)	ND	ND	ND	ND	-	ND	ND	ND

^{* 0.0}E - 0 means 0.0 x 10-0

*"ND" means the sampled data is below measurable limit.

The detection limits of major three nuclide that are not detected are as follows:
I-131: approx.1E-2Bq/cm3,Cs-134:approx.2E-2Bq/cm3,Cs-137: approx.3E-2Bq/cm3
Please note that these nuclides are sometimes detected even when they are below the limits, contingent on the detector or samples.

Place of Sampling	F1 South east of turbine building Unit 4	F1 North east of Process Main building	F1 South east of Process Main building	F1 south of Miscellaneous Solid Waste Volume Reduction Treatment Building	F1 South west of Site Banker Builidng	F1 West of Incineration Workshop Building	F1 North of Miscellaneous Solid Waste Volume Reduction Treatment Building	F1 South east of Site Banker Builidng		
Time of Sampling	December 4, 2011 9:16	December 4, 2011 9:24	December 4, 2011 9:27	December 4, 2011 9:43	ND	December 4, 2011 9:37	December 4, 2011 9:48	December 4, 2011 9:31		
Detected Nuclides (Half-life)		Density of sample (Bq/cm3)								
I-131 (about 8 days)	ND	ND	ND	ND	-	ND	ND	ND		
Cs-134 (about 2 years)	ND	ND	7.4E-02	ND	-	8.4E-02	2.4E-02	ND		
Cs-137 (about 30 years)	ND	ND	1.1E-01	ND	-	1.3E-01	ND	ND		
Te-129 (about 70 minutes)	ND	ND	ND	ND	-	ND	ND	ND		
Te-129m (about 34 days)	ND	ND	ND	ND	-	ND	ND	ND		
Cs-136 (about 13 days)	ND	ND	ND	ND	-	ND	ND	ND		
Ba-140 (about 13 days)	ND	ND	ND	ND	-	ND	ND	ND		

^{* 0.0}E - 0 means 0.0 x 10-0

The detection limits of major three nuclide that are not detected are as follows:

I-131: approx.1E-2Bq/cm3,Cs-134:approx.2E-2Bq/cm3,Cs-137: approx.3E-2Bq/cm3

Please note that these nuclides are sometimes detected even when they are below the limits, contingent on the detector or samples.

^{*&}quot;ND" means the sampled data is below measurable limit.

Place of Sampling	F1 South east of turbine building Unit 4	F1 North east of Process Main building	F1 South east of Process Main building	F1 south of Miscellaneous Solid Waste Volume Reduction Treatment Building	F1 South west of Site Banker Builidng	F1 West of Incineration Workshop Building	F1 North of Miscellaneous Solid Waste Volume Reduction Treatment Building	F1 South east of Site Banker Builidng		
Time of Sampling	December 5, 2011 9:59	December 5, 2011 10:05	December 5, 2011 10:09	December 5, 2011 10:26	December 5, 2011 10:17	December 5, 2011 10:21	December 5, 2011 10:32	December 5, 2011 10:13		
Detected Nuclides (Half-life)		Density of sample (Bq/cm3)								
I-131 (about 8 days)	ND	ND	ND	ND	ND	ND	ND	ND		
Cs-134 (about 2 years)	ND	ND	2.4E-02	2.8E-02	ND	1.0E-01	ND	ND		
Cs-137 (about 30 years)	ND	ND	3.6E-02	2.9E-02	ND	1.3E-01	ND	ND		
Te-129 (about 70 minutes)	ND	ND	ND	ND	ND	ND	ND	ND		
Te-129m (about 34 days)	ND	ND	ND	ND	ND	ND	ND	ND		
Cs-136 (about 13 days)	ND	ND	ND	ND	ND	ND	ND	ND		
Ba-140 (about 13 days)	ND	ND	ND	ND	ND	ND	ND	ND		

^{* 0.0}E - 0 means 0.0 x 10-0

*"ND" means the sampled data is below measurable limit.

The detection limits of major three nuclide that are not detected are as follows:
I-131: approx.1E-2Bq/cm3,Cs-134:approx.2E-2Bq/cm3,Cs-137: approx.3E-2Bq/cm3
Please note that these nuclides are sometimes detected even when they are below the limits, contingent on the detector or samples.

Place of Sampling	F1 South east of turbine building Unit 4	F1 North east of Process Main building	F1 South east of Process Main building	F1 south of Miscellaneous Solid Waste Volume Reduction Treatment Building	F1 South west of Site Banker Builidng	F1 West of Incineration Workshop Building	F1 North of Miscellaneous Solid Waste Volume Reduction Treatment Building	F1 South east of Site Banker Builidng		
Time of Sampling	December 6, 2011 9:54	December 6, 2011 9:59	December 6, 2011 10:03	December 6, 2011 10:15	ND	December 6, 2011 10:13	December 6, 2011 10:21	December 6, 2011 10:08		
Detected Nuclides (Half-life)		Density of sample (Bq/cm3)								
I-131 (about 8 days)	ND	ND	ND	ND	-	ND	ND	ND		
Cs-134 (about 2 years)	ND	ND	ND	ND	-	9.9E-02	ND	ND		
Cs-137 (about 30 years)	ND	ND	ND	ND	-	1.2E-01	2.9E-02	ND		
Te-129 (about 70 minutes)	ND	ND	ND	ND	-	ND	ND	ND		
Te-129m (about 34 days)	ND	ND	ND	ND	-	ND	ND	ND		
Cs-136 (about 13 days)	ND	ND	ND	ND	-	ND	ND	ND		
Ba-140 (about 13 days)	ND	ND	ND	ND	-	ND	ND	ND		

^{* 0.0}E - 0 means 0.0 x 10-0

*"ND" means the sampled data is below measurable limit.
The detection limits of major three nuclide that are not detected are as follows:
I-131: approx.1E-2Bq/cm3,Cs-134:approx.3E-2Bq/cm3,Cs-137: approx.3E-2Bq/cm3

Please note that these nuclides are sometimes detected even when they are below the limits, contingent on the detector or samples.

Place of Sampling	F1 South east of turbine building Unit 4	F1 North east of Process Main building	F1 South east of Process Main building	F1 south of Miscellaneous Solid Waste Volume Reduction Treatment Building	F1 South west of Site Banker Builidng	F1 West of Incineration Workshop Building	F1 North of Miscellaneous Solid Waste Volume Reduction Treatment Building	F1 South east of Site Banker Builidng		
Time of Sampling	December 7, 2011 9:48	December 7, 2011 9:53	December 7, 2011 10:01	December 7, 2011 10:13	ND	December 7, 2011 10:10	December 7, 2011 10:18	December 7, 2011 10:05		
Detected Nuclides (Half-life)		Density of sample (Bq/cm3)								
I-131 (about 8 days)	ND	ND	ND	ND	-	ND	ND	ND		
Cs-134 (about 2 years)	ND	ND	ND	ND	-	1.2E-01	2.7E-02	ND		
Cs-137 (about 30 years)	ND	ND	ND	ND	-	1.3E-01	3.7E-02	ND		
Te-129 (about 70 minutes)	ND	ND	ND	ND	-	ND	ND	ND		
Te-129m (about 34 days)	ND	ND	ND	ND	-	ND	ND	ND		
Cs-136 (about 13 days)	ND	ND	ND	ND	-	ND	ND	ND		
Ba-140 (about 13 days)	ND	ND	ND	ND	-	ND	ND	ND		

^{* 0.0}E - 0 means 0.0 x 10-0

The detection limits of major three nuclide that are not detected are as follows:

^{*&}quot;ND" means the sampled data is below measurable limit.

I-131: approx.1E-2Bq/cm3,Cs-134:approx.2E-2Bq/cm3,Cs-137: approx.3E-2Bq/cm3
Please note that these nuclides are sometimes detected even when they are below the limits, contingent on the detector or samples.

Place of Sampling	F1 South east of turbine building Unit 4	F1 North east of Process Main building	F1 South east of Process Main building	F1 south of Miscellaneous Solid Waste Volume Reduction Treatment Building	F1 South west of Site Banker Builidng	F1 West of Incineration Workshop Building	F1 North of Miscellaneous Solid Waste Volume Reduction Treatment Building	F1 South east of Site Banker Builidng		
Time of Sampling	December 8, 2011 9:44	December 8, 2011 9:48	December 8, 2011 9:51	December 8, 2011 10:03	ND	December 8, 2011 10:00	December 8, 2011 10:07	December 8, 2011 9:55		
Detected Nuclides (Half-life)		Density of sample (Bq/cm3)								
I-131 (about 8 days)	ND	ND	ND	ND	-	ND	ND	ND		
Cs-134 (about 2 years)	ND	ND	ND	ND	-	2.5E-01	2.4E-02	ND		
Cs-137 (about 30 years)	ND	ND	ND	ND	-	3.1E-01	ND	ND		
Te-129 (about 70 minutes)	ND	ND	ND	ND	-	ND	ND	ND		
Te-129m (about 34 days)	ND	ND	ND	ND	-	ND	ND	ND		
Cs-136 (about 13 days)	ND	ND	ND	ND	-	ND	ND	ND		
Ba-140 (about 13 days)	ND	ND	ND	ND	-	ND	ND	ND		

^{* 0.0}E - 0 means 0.0 x 10-0

*"ND" means the sampled data is below measurable limit.

The detection limits of major three nuclide that are not detected are as follows:
I-131: approx.2E-2Bq/cm3,Cs-134:approx.3E-2Bq/cm3,Cs-137: approx.3E-2Bq/cm3
Please note that these nuclides are sometimes detected even when they are below the limits, contingent on the detector or samples.

Place of Sampling	F1 South east of turbine building Unit 4	F1 North east of Process Main building	F1 South east of Process Main building	F1 south of Miscellaneous Solid Waste Volume Reduction Treatment Building	F1 South west of Site Banker Builidng	F1 West of Incineration Workshop Building	F1 North of Miscellaneous Solid Waste Volume Reduction Treatment Building	F1 South east of Site Banker Builidng			
Time of Sampling	December 9, 2011 9:51	December 9, 2011 9:55	December 9, 2011 9:59	December 9, 2011 10:11	ND	December 9, 2011 10:07	December 9, 2011 10:15	December 9, 2011 10:03			
Detected Nuclides (Half-life)		Density of sample (Bq/cm3)									
I-131 (about 8 days)	ND	ND	ND	ND	-	ND	ND	ND			
Cs-134 (about 2 years)	ND	ND	ND	3.2E-02	-	1.2E-01	2.5E-02	ND			
Cs-137 (about 30 years)	ND	ND	ND	3.2E-02	-	1.2E-01	ND	ND			
Te-129 (about 70 minutes)	ND	ND	ND	ND	-	ND	ND	ND			
Te-129m (about 34 days)	ND	ND	ND	ND	-	ND	ND	ND			
Cs-136 (about 13 days)	ND	ND	ND	ND	-	ND	ND	ND			
Ba-140 (about 13 days)	ND	ND	ND	ND	-	ND	ND	ND			

^{* 0.0}E - 0 means 0.0 x 10-0

^{*&}quot;ND" means the sampled data is below measurable limit.

The detection limits of major three nuclide that are not detected are as follows:
I-131: approx.1E-2Bq/cm3,Cs-134:approx.3E-2Bq/cm3,Cs-137: approx.3E-2Bq/cm3

Please note that these nuclides are sometimes detected even when they are below the limits, contingent on the detector or samples.

Place of Sampling	F1 South east of turbine building Unit 4	F1 North east of Process Main building	F1 South east of Process Main building	F1 south of Miscellaneous Solid Waste Volume Reduction Treatment Building	F1 South west of Site Banker Builidng	F1 West of Incineration Workshop Building	F1 North of Miscellaneous Solid Waste Volume Reduction Treatment Building	F1 South east of Site Banker Builidng		
Time of Sampling	December 10, 2011 9:52	December 10, 2011 9:57	December 10, 2011 10:01	December 10, 2011 10:14	ND	December 10, 2011 10:11	December 10, 2011 10:19	December 10, 2011 10:05		
Detected Nuclides (Half-life)		Density of sample (Bq/cm3)								
I-131 (about 8 days)	ND	ND	ND	ND	-	ND	ND	ND		
Cs-134 (about 2 years)	ND	ND	ND	ND	-	9.6E-02	2.8E-02	ND		
Cs-137 (about 30 years)	ND	ND	ND	3.8E-02	-	1.3E-01	3.0E-02	ND		
Te-129 (about 70 minutes)	ND	ND	ND	ND	-	ND	ND	ND		
Te-129m (about 34 days)	ND	ND	ND	ND	-	ND	ND	ND		
Cs-136 (about 13 days)	ND	ND	ND	ND	-	ND	ND	ND		
Ba-140 (about 13 days)	ND	ND	ND	ND	-	ND	ND	ND		

^{* 0.0}E - 0 means 0.0 x 10-0

^{*&}quot;ND" means the sampled data is below measurable limit.

The detection limits of major three nuclide that are not detected are as follows:
I-131: approx.1E-2Bq/cm3,Cs-134:approx.3E-2Bq/cm3,Cs-137: approx.3E-2Bq/cm3
Please note that these nuclides are sometimes detected even when they are below the limits, contingent on the detector or samples.

Place of Sampling	F1 South east of turbine building Unit 4	F1 North east of Process Main building	F1 South east of Process Main building	F1 south of Miscellaneous Solid Waste Volume Reduction Treatment Building	F1 South west of Site Banker Builidng	F1 West of Incineration Workshop Building	F1 North of Miscellaneous Solid Waste Volume Reduction Treatment Building	F1 South east of Site Banker Builidng		
Time of Sampling	December 11, 2011 9:18	December 11, 2011 9:23	December 11, 2011 9:26	December 11, 2011 9:39	ND	December 11, 2011 9:35	December 11, 2011 9:43	December 11, 2011 9:31		
Detected Nuclides (Half-life)		Density of sample (Bq/cm3)								
I-131 (about 8 days)	ND	ND	ND	ND	-	ND	ND	ND		
Cs-134 (about 2 years)	ND	ND	ND	3.2E-02	-	1.7E-01	ND	ND		
Cs-137 (about 30 years)	ND	ND	ND	4.1E-02	-	2.4E-01	ND	ND		
Te-129 (about 70 minutes)	ND	ND	ND	ND	-	ND	ND	ND		
Te-129m (about 34 days)	ND	ND	ND	ND	-	ND	ND	ND		
Cs-136 (about 13 days)	ND	ND	ND	ND	-	ND	ND	ND		
Ba-140 (about 13 days)	ND	ND	ND	ND	-	ND	ND	ND		

^{* 0.0}E - 0 means 0.0 x 10-0

^{*&}quot;ND" means the sampled data is below measurable limit.

The detection limits of major three nuclide that are not detected are as follows:

I-131: approx.1E-2Bq/cm3,Cs-134:approx.3E-2Bq/cm3,Cs-137: approx.3E-2Bq/cm3

Please note that these nuclides are sometimes detected even when they are below the limits, contingent on the detector or samples.

Place of Sampling	F1 South east of turbine building Unit 4	F1 North east of Process Main building	F1 South east of Process Main building	F1 south of Miscellaneous Solid Waste Volume Reduction Treatment Building	F1 South west of Site Banker Builidng	F1 West of Incineration Workshop Building	F1 North of Miscellaneous Solid Waste Volume Reduction Treatment Building	F1 South east of Site Banker Builidng		
Time of Sampling	December 12, 2011 9:47	December 12, 2011 9:52	December 12, 2011 9:55	December 12, 2011 10:10	December 12, 2011 10:03	December 12, 2011 10:07	December 12, 2011 10:14	December 12, 2011 10:00		
Detected Nuclides (Half-life)		Density of sample (Bq/cm3)								
I-131 (about 8 days)	ND	ND	ND	ND	ND	ND	ND	ND		
Cs-134 (about 2 years)	ND	ND	ND	2.9E-02	ND	1.6E-01	ND	ND		
Cs-137 (about 30 years)	ND	ND	ND	4.1E-02	ND	1.9E-01	ND	ND		
Te-129 (about 70 minutes)	ND	ND	ND	ND	ND	ND	ND	ND		
Te-129m (about 34 days)	ND	ND	ND	ND	ND	ND	ND	ND		
Cs-136 (about 13 days)	ND	ND	ND	ND	ND	ND	ND	ND		
Ba-140 (about 13 days)	ND	ND	ND	ND	ND	ND	ND	ND		

^{* 0.0}E - 0 means 0.0 x 10-0

*"ND" means the sampled data is below measurable limit.

The detection limits of major three nuclide that are not detected are as follows:
I-131: approx.1E-2Bq/cm3,Cs-134:approx.2E-2Bq/cm3,Cs-137: approx.3E-2Bq/cm3

Please note that these nuclides are sometimes detected even when they are below the limits, contingent on the detector or samples.

Place of Sampling	F1 South east of turbine building Unit 4	F1 North east of Process Main building	F1 South east of Process Main building	F1 south of Miscellaneous Solid Waste Volume Reduction Treatment Building	F1 South west of Site Banker Builidng	F1 West of Incineration Workshop Building	F1 North of Miscellaneous Solid Waste Volume Reduction Treatment Building	F1 South east of Site Banker Builidng		
Time of Sampling	December 13, 2011 9:48	December 13, 2011 9:53	December 13, 2011 9:57	December 13, 2011 10:09	ND	December 13, 2011 10:05	December 13, 2011 10:13	December 13, 2011 10:01		
Detected Nuclides (Half-life)		Density of sample (Bq/cm3)								
I-131 (about 8 days)	ND	ND	ND	ND	-	ND	ND	ND		
Cs-134 (about 2 years)	ND	ND	ND	ND	-	1.7E-01	3.1E-02	ND		
Cs-137 (about 30 years)	ND	ND	ND	3.1E-02	-	2.1E-01	3.4E-02	ND		
Te-129 (about 70 minutes)	ND	ND	ND	ND	-	ND	ND	ND		
Te-129m (about 34 days)	ND	ND	ND	ND	-	ND	ND	ND		
Cs-136 (about 13 days)	ND	ND	ND	ND	-	ND	ND	ND		
Ba-140 (about 13 days)	ND	ND	ND	ND	-	ND	ND	ND		

^{* 0.0}E - 0 means 0.0 x 10-0

^{*&}quot;ND" means the sampled data is below measurable limit.

The detection limits of major three nuclide that are not detected are as follows:
I-131: approx.1E-2Bq/cm3,Cs-134:approx.2E-2Bq/cm3,Cs-137: approx.3E-2Bq/cm3

Please note that these nuclides are sometimes detected even when they are below the limits, contingent on the detector or samples.

Place of Sampling	F1 South east of turbine building Unit 4	F1 North east of Process Main building	F1 South east of Process Main building	F1 south of Miscellaneous Solid Waste Volume Reduction Treatment Building	F1 South west of Site Banker Builidng	F1 West of Incineration Workshop Building	F1 North of Miscellaneous Solid Waste Volume Reduction Treatment Building	F1 South east of Site Banker Builidng		
Time of Sampling	December 14, 2011 9:52	December 14, 2011 9:57	December 14, 2011 10:03	December 14, 2011 10:15	ND	December 14, 2011 10:11	December 14, 2011 10:19	December 14, 2011 10:07		
Detected Nuclides (Half-life)		Density of sample (Bq/cm3)								
I-131 (about 8 days)	ND	ND	ND	ND	-	ND	ND	ND		
Cs-134 (about 2 years)	ND	ND	ND	2.6E-02	-	1.1E-01	ND	ND		
Cs-137 (about 30 years)	ND	ND	ND	4.0E-02	-	1.8E-01	4.3E-02	ND		
Te-129 (about 70 minutes)	ND	ND	ND	ND	-	ND	ND	ND		
Te-129m (about 34 days)	ND	ND	ND	ND	-	ND	ND	ND		
Cs-136 (about 13 days)	ND	ND	ND	ND	-	ND	ND	ND		
Ba-140 (about 13 days)	ND	ND	ND	ND	-	ND	ND	ND		

^{* 0.0}E - 0 means 0.0 x 10-0

^{*&}quot;ND" means the sampled data is below measurable limit.

The detection limits of major three nuclide that are not detected are as follows:
I-131: approx.1E-2Bq/cm3,Cs-134:approx.2E-2Bq/cm3,Cs-137: approx.3E-2Bq/cm3
Please note that these nuclides are sometimes detected even when they are below the limits, contingent on the detector or samples.

Place of Sampling	F1 South east of turbine building Unit 4	F1 North east of Process Main building	F1 South east of Process Main building	F1 south of Miscellaneous Solid Waste Volume Reduction Treatment Building	F1 South west of Site Banker Builidng	F1 West of Incineration Workshop Building	F1 North of Miscellaneous Solid Waste Volume Reduction Treatment Building	F1 South east of Site Banker Builidng		
Time of Sampling	December 15, 2011 9:52	December 15, 2011 9:56	December 15, 2011 10:00	December 15, 2011 10:10	ND	December 15, 2011 10:07	December 15, 2011 10:14	December 15, 2011 10:03		
Detected Nuclides (Half-life)		Density of sample (Bq/cm3)								
I-131 (about 8 days)	ND	ND	ND	ND	-	ND	ND	ND		
Cs-134 (about 2 years)	ND	ND	ND	ND	-	1.3E-01	ND	ND		
Cs-137 (about 30 years)	ND	ND	ND	3.1E-02	-	1.4E-01	3.6E-02	ND		
Te-129 (about 70 minutes)	ND	ND	ND	ND	-	ND	ND	ND		
Te-129m (about 34 days)	ND	ND	ND	ND	-	ND	ND	ND		
Cs-136 (about 13 days)	ND	ND	ND	ND	-	ND	ND	ND		
Ba-140 (about 13 days)	ND	ND	ND	ND	-	ND	ND	ND		

^{* 0.0}E - 0 means 0.0 x 10-0

^{*&}quot;ND" means the sampled data is below measurable limit.

The detection limits of major three nuclide that are not detected are as follows:

I-131: approx.1E-2Bq/cm3,Cs-134:approx.2E-2Bq/cm3,Cs-137: approx.3E-2Bq/cm3
Please note that these nuclides are sometimes detected even when they are below the limits, contingent on the detector or samples.

[Definite Report] Nuclide Analysis Results of Radioactive Materials in Seawater < Offshore of Ibaraki Prefecture 1/2 >

Place of Sampling	3 km offsh Takadokoban Upper La	na shore	3 km offsh Takadokoban Lower La	na shore	3 km offsh Kujihama sho Laye	re Upper	3 km offsh Kujihama sho Laye	re Lower	3 km offshore shore Uppe		3 km offshore shore Lowe		Density limit by the announcement of Reactor Regulation
Time of Sampling	November 2 7:30	,	November 2 7:29	•	November 3 7:26	•	November 3 7:24	•	November 3 9:15	0, 2011	November 3 9:12	,	(Bq/L) (the density limit in the
Detected Nuclides (Half-life)	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor (/)	water outside of surrounding monitored areas in the section 6 of the appendix 2)
I-131 (about 8 days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	40
Cs-134 (about 2 years)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	60
Cs-137 (about 30 years)	ND	-	ND	-	ND	-	ND	-	ND	i	ND	-	90
Mo-99 (approx. 66hrs)	ND	i	ND	-	ND	-	ND	i	ND	i	ND	-	1,000
Tc-99m (approx.6hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	40,000
Te-129m (approx.34days)	ND	-	ND	-	ND	-	ND	-	ND	1	ND	-	300
Te-129(approx.70mins)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	10,000
Te-132 (approx.78hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	200
I-132 (approx.2hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	3,000
Cs-136 (approx.13days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	300
Ba-140(approx.13days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	300
La-140 (approx. 40hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	400

^{*} Density by the announcement of Reactor Regulation is stated with an amount converted from Bq/cm3 to Bq/L.

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit of radioactive material in seawater. The detection limits of major three nuclide that are not detected are as follows:

approx. 0.99Bq/L, Cs-134: approx. 1.5Bq/L, Cs-137: approx. 1.4Bq/L
Please note that these nuclides are sometimes detected even when they are below the limits, contingent on the detector or samples.

[Definite Report] Nuclide Analysis Results of Radioactive Materials in Seawater < Offshore of Ibaraki Prefecture 2/2 >

Place of Sampling	3 km offshore shore Uppe	r Layer	3 km offshore shore Lowe	r Layer	3 km offshore shore Uppe	r Layer	shore Lowe	r Layer		/			Density limit by the announcement of Reactor Regulation
Time of Sampling	November 2 13:25	,	November 2 13:22	•	November 2 14:52	,	November 2 14:50	,					(Bq/L) (the density limit in the water outside of
Detected Nuclides (Half-life)	Density of Sample (Bq/L)	Scaling Factor	surrounding monitored areas in the section 6 of the appendix 2)										
I-131 (about 8 days)	ND	-	ND	-	ND	-	ND	-					40
Cs-134 (about 2 years)	ND	-	ND	-	ND	-	ND	-					60
Cs-137 (about 30 years)	ND	-	ND	-	ND	-	ND	-					90
Mo-99 (approx. 66hrs)	ND	-	ND	-	ND	-	ND	-					1,000
Tc-99m (approx.6hrs)	ND	-	ND	-	ND	-	ND	-					40,000
Te-129m (approx.34days)	ND	-	ND	-	ND	-	ND	-					300
Te-129(approx.70mins)	ND	-	ND	-	ND	-	ND	-					10,000
Te-132 (approx.78hrs)	ND	-	ND	-	ND	-	ND	-					200
I-132 (approx.2hrs)	ND	-	ND	-	ND	-	ND	-					3,000
Cs-136 (approx.13days)	ND	-	ND	-	ND	-	ND	-					300
Ba-140(approx.13days)	ND	-	ND	-	ND	-	ND	-					300
La-140 (approx. 40hrs)	ND	-	ND	-	ND	-	ND	-					400

^{*} Density by the announcement of Reactor Regulation is stated with an amount converted from Bq/cm3 to Bq/L.

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit of radioactive material in seawater. The detection limits of major three nuclide that are not detected are as follows: 1.2Bq/L, Cs-134: approx. 1.4Bq/L, Cs-137: approx. 1.3Bq/L

[Definite Report] Nuclide Analysis Results of Radioactive Materials in Seawater < Offshore of Ibaraki Prefecture 1/2 >

Place of Sampling	3 km offsh Takadokoban Upper La	na shore	3 km offsho Takadokoban Lower La	na shore	3 km offsh Kujihama sho Laye	re Upper	3 km offsho Kujihama sho Layer	re Lower	3 km offshore shore Uppe		3 km offshore shore Lowe		Density limit by the announcement of Reactor Regulation
Time of Sampling	December 7 7:11	7, 2011	December 7 7:10	7, 2011	December 7 7:31	7, 2011	December 7 7:29	7, 2011	December 7 13:30	*	December 7	*	(Bq/L) (the density limit in the
Detected Nuclides (Half-life)	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor	water outside of surrounding monitored areas in the section 6 of the appendix 2)
I-131 (about 8 days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	40
Cs-134 (about 2 years)	ND	-	ND	ı	ND	-	ND	ı	ND	ı	ND	-	60
Cs-137 (about 30 years)	ND	-	ND	ı	ND	-	ND	ı	ND	ı	ND	-	90
Mo-99 (approx. 66hrs)	ND	1	ND	1	ND	-	ND	ı	ND	ı	ND	-	1,000
Tc-99m (approx.6hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	40,000
Te-129m (approx.34days)	ND	1	ND	1	ND	-	ND	ı	ND	ı	ND	-	300
Te-129(approx.70mins)	ND	-	ND	ı	ND	-	ND	-	ND	-	ND	-	10,000
Te-132 (approx.78hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	200
I-132 (approx.2hrs)	ND	-	ND	ı	ND	-	ND	ı	ND	ı	ND	-	3,000
Cs-136 (approx.13days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	300
Ba-140(approx.13days)	ND	-	ND	1	ND	-	ND	-	ND	-	ND	-	300
La-140 (approx. 40hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	400

^{*} Density by the announcement of Reactor Regulation is stated with an amount converted from Bq/cm3 to Bq/L.

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit of radioactive material in seawater. The detection limits of major three nuclide that are not detected are as follows:

approx. 0.99Bq/L, Cs-134: approx. 1.5Bq/L, Cs-137: approx. 1.3Bq/L
Please note that these nuclides are sometimes detected even when they are below the limits, contingent on the detector or samples.

[Definite Report] Nuclide Analysis Results of Radioactive Materials in Seawater < Offshore of Ibaraki Prefecture 2/2 >

Place of Sampling Time of Sampling	3 km offshore shore Uppe December 6 13:46	r Layer 6, 2011	3 km offshore shore Lowe December 6 13:43	r Layer 5, 2011	3 km offshore shore Uppe December 6 13:50	r Layer 6, 2011	3 km offshore shore Lowe December 6 13:48	r Layer 6, 2011					Density limit by the announcement of Reactor Regulation (Bq/L) (the density limit in the
Detected Nuclides (Half-life)	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	water outside of surrounding monitored areas in the section 6 of the appendix 2)						
I-131 (about 8 days)	ND	-	ND	-	ND	-	ND	-					40
Cs-134 (about 2 years)	ND	-	ND	-	ND	-	ND	-					60
Cs-137 (about 30 years)	ND	-	ND	-	ND	-	ND	-					90
Mo-99 (approx. 66hrs)	ND	-	ND	-	ND	-	ND	-					1,000
Tc-99m (approx.6hrs)	ND	-	ND	-	ND	-	ND	-					40,000
Te-129m (approx.34days)	ND	-	ND	-	ND	-	ND	-					300
Te-129(approx.70mins)	ND	-	ND	-	ND	-	ND	-					10,000
Te-132 (approx.78hrs)	ND	-	ND	-	ND	-	ND	-					200
I-132 (approx.2hrs)	ND	-	ND	-	ND	-	ND	-					3,000
Cs-136 (approx.13days)	ND	-	ND	-	ND	-	ND	-					300
Ba-140(approx.13days)	ND	-	ND	-	ND	-	ND	-					300
La-140 (approx. 40hrs)	ND	-	ND	-	ND	-	ND	-					400

^{*} Density by the announcement of Reactor Regulation is stated with an amount converted from Bq/cm3 to Bq/L.

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit of radioactive material in seawater. The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 1.3Bq/L, Cs-134: approx. 1.4Bq/L, Cs-137: approx. 1.3Bq/L

[Definite Report] Nuclide Analysis Results of Radioactive Materials in Seawater < Miyagi prefecture offshore 1/3 >

Place of Sampling	Ishinomaki ba Layer		Ishinomaki ba Layer	,	Ishinomaki ba Layer	,	Offshore of Ea Kinkasan Upp		Offshore of Ea Kinkasan Mide		Offshore of Ea Kinkasan Low		Density limit by the announcement of
Time of Sampling	November 2 10:37	,	November 28 10:35		November 2 10:28		November 2 8:05	8, 2011	November 2 8:37	8, 2011	November 2 8:16	8, 2011	Reactor Regulation (Bq/L) (the density limit in the
Detected Nuclides (Half-life)	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor (/)	water outside of surrounding monitored areas in the section 6 of the appendix 2)						
I-131 (about 8 days)	ND	ı	ND	ı	ND	ī	ND	1	ND	ı	ND	-	40
Cs-134 (about 2 years)	ND	ı	ND	-	ND	-	ND	i	ND	ı	ND	-	60
Cs-137 (about 30 years)	ND	ı	ND	-	ND	-	ND	i	ND	ı	ND	-	90
Mo-99 (approx. 66hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	1,000
Tc-99m (approx.6hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	40,000
Te-129m (approx.34days)	ND	-	ND		ND	-	ND	-	ND	-	ND	-	300
Te- 129(approx.70mins)	ND	-	ND	-	ND	-	ND	ı	ND	-	ND	-	10,000
Te-132 (approx.78hrs)	ND	-	ND	-	ND	-	ND	ı	ND	1	ND	-	200
I-132 (approx.2hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	3,000
Cs-136 (approx.13days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	300
Ba- 140(approx.13days)	ND	-	ND	-	ND	-	ND	i	ND	-	ND	-	300
La-140 (approx. 40hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	400

^{*} Density by the announcement of Reactor Regulation is stated with an amount converted from Bq/cm3 to Bq/L.

The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 0.92Bq/L, Cs-134: approx. 1.2Bq/L, Cs-137: approx. 1.2Bq/L Please note that these nuclides are sometimes detected even when they are below the limits, contingent on the detector or samples.

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

[Definite Report] Nuclide Analysis Results of Radioactive Materials in Seawater < Miyagi prefecture offshore 2/3 >

Place of Sampling	Offshore of So of Kinkasan Layer	Upper	Offshore of So of Kinkasan Layer	Middle	Offshore of So of Kinkasan Laye	Lower	Offshore Shichigaham Layer	a Upper	Offshore Shichigaham Laye	a Middle	Offshore Shichigaham Laye	a Lower	Density limit by the announcement of Reactor Regulation
Time of Sampling	November 2 9:08	8, 2011	November 2 9:16	•	November 2 9:10	,	November 2 9:15	8, 2011	November 2 9:20	,	November 2 9:18	,	(Bq/L) (the density limit in the
Detected Nuclides (Half-life)	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	water outside of surrounding monitored areas in the section 6 of the appendix 2)
I-131 (about 8 days)	ND	-	ND	i)	ND	-	ND	-	ND	-	ND	-	40
Cs-134 (about 2 years)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	60
Cs-137 (about 30 years)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	90
Mo-99 (approx. 66hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	1,000
Tc-99m (approx.6hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	40,000
Te-129m (approx.34days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	300
1e- 129(approx.70mins	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	10,000
Te-132 (approx.78hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	200
I-132 (approx.2hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	3,000
Cs-136 (approx.13days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	300
Ba- 140(approx.13days	ND	-	ND	ı	ND	-	ND	-	ND	-	ND	-	300
La-140 (approx. 40hrs)	ND	-	ND	i	ND	-	ND	-	ND	-	ND	-	400

^{*} Density by the announcement of Reactor Regulation is stated with an amount converted from Bq/cm3 to Bq/L.

The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 1.0Bq/L, Cs-134: approx. 1.1Bq/L, Cs-137: approx. 1.3Bq/L Please note that these nuclides are sometimes detected even when they are below the limits, contingent on the detector or samples.

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

[Definite Report] Nuclide Analysis Results of Radioactive Materials in Seawater < Miyagi prefecture offshore 3/3 >

Place of Sampling	Central area of bay Upper		Central area of bay MIddle		Central area of bay Lower		Offshore Abukumagaw Laye	a Upper	Offshore Abukumagaw Layer	a Middle	Offshore Abukumagaw Laye	a Lower	Density limit by the announcement of Reactor Regulation
Time of Sampling	November 2 7:10	*	November 2 7:15	8, 2011	November 2 7:12	•	November 2 8:15	8, 2011	November 2 8:20		November 2 8:17	*	(Bq/L) (the density limit in the water outside of
Detected Nuclides (Half-life)	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	surrounding monitored areas in the section 6 of the appendix 2)
I-131 (about 8 days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	40
Cs-134 (about 2 years)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	60
Cs-137 (about 30 years)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	90
Mo-99 (approx. 66hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	1,000
Tc-99m (approx.6hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	40,000
Te-129m (approx.34days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	300
Te- 129(approx.70mins)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	10,000
Te-132 (approx.78hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	200
I-132 (approx.2hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	3,000
Cs-136 (approx.13days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	300
Ba- 140(approx.13days)	ND	-	ND	ı	ND	-	ND	-	ND	-	ND	-	300
La-140 (approx. 40hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	400

^{*} Density by the announcement of Reactor Regulation is stated with an amount converted from Bq/cm3 to Bq/L.

The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 0.97Bq/L, Cs-134: approx. 1.1Bq/L, Cs-137: approx. 1.1Bq/L Please note that these nuclides are sometimes detected even when they are below the limits, contingent on the detector or samples.

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

[Definite Report] Nuclide Analysis Results of Radioactive Materials in Seawater < Miyagi prefecture offshore 1/3 >

Place of Sampling	Ishinomaki ba Layer		Ishinomaki ba Layer		Ishinomaki ba Layei		Offshore of Ea Kinkasan Upp		Offshore of Ea		Offshore of Ea Kinkasan Low		Density limit by the announcement of
Time of Sampling	December 7 10:48	•	December 7 10:56		December 7 10:53		December 7 8:22	7, 2011	December 7 8:36		December 7 8:30	7, 2011	Reactor Regulation (Bq/L) (the density limit in the
Detected Nuclides (Half-life)	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	water outside of surrounding monitored areas in the section 6 of the appendix 2)
I-131 (about 8 days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	40
Cs-134 (about 2 years)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	60
Cs-137 (about 30 years)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	90
Mo-99 (approx. 66hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	1,000
Tc-99m (approx.6hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	40,000
Te-129m (approx.34days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	300
129(approx.70mins	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	10,000
Te-132 (approx.78hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	200
I-132 (approx.2hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	3,000
Cs-136 (approx.13days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	300
ва- 140(approx.13days	ND	-	ND	-	ND	-	ND	1	ND	-	ND	-	300
La-140 (approx. 40hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	400

^{*} Density by the announcement of Reactor Regulation is stated with an amount converted from Bq/cm3 to Bq/L.

The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 0.93Bq/L, Cs-134: approx. 1.2Bq/L, Cs-137: approx. 1.2Bq/L Please note that these nuclides are sometimes detected even when they are below the limits, contingent on the detector or samples.

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

[Definite Report] Nuclide Analysis Results of Radioactive Materials in Seawater < Miyagi prefecture offshore 2/3 >

Place of Sampling	Offshore of So of Kinkasan Layer	Upper	Offshore of So of Kinkasan Layer	Middle	Offshore of So of Kinkasan Laye	Lower	Offshore Shichigaham Laye	a Upper	Offshore Shichigaham Laye	a Middle	Offshore Shichigaham Laye	a Lower	Density limit by the announcement of Reactor Regulation
Time of Sampling	December 7 9:10	7, 2011	December 7 9:21	7, 2011	December 7 9:15	•	December 7 9:15	,	December 7 9:16	•	December 7 9:12	,	(Bq/L) (the density limit in the
Detected Nuclides (Half-life)	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	Density of Sample (Bq/L)	Scaling Factor	water outside of surrounding monitored areas in the section 6 of the appendix 2)
I-131 (about 8 days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	40
Cs-134 (about 2 years)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	60
Cs-137 (about 30 years)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	90
Mo-99 (approx. 66hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	1,000
Tc-99m (approx.6hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	40,000
Te-129m (approx.34days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	300
Te- 129(approx.70mins)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	10,000
Te-132 (approx.78hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	200
I-132 (approx.2hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	3,000
Cs-136 (approx.13days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	300
Ba- 140(approx.13days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	300
La-140 (approx. 40hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	400

^{*} Density by the announcement of Reactor Regulation is stated with an amount converted from Bq/cm3 to Bq/L.

The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 0.93Bq/L, Cs-134: approx. 1.2Bq/L, Cs-137: approx. 1.0Bq/L Please note that these nuclides are sometimes detected even when they are below the limits, contingent on the detector or samples.

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

[Definite Report] Nuclide Analysis Results of Radioactive Materials in Seawater < Miyagi prefecture offshore 3/3 >

Place of Sampling	Central area of bay Upper		Central area of bay MIddle		Central area of bay Lower		Offshore Abukumagaw Laye	/a Upper	Offshore Abukumagaw Laye	a Middle	Offshore Abukumagaw Laye	va Lower	Density limit by the announcement of Reactor Regulation
Time of Sampling	December 7 7:07	', 2011	December 7 7:13	7, 2011	December 7 7:05	*	December 7 8:14	7, 2011	December 7 8:16	-	December 7 8:11	,	(Bq/L) (the density limit in the
Detected Nuclides (Half-life)	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor (/)	Density of Sample (Bq/L)	Scaling Factor	water outside of surrounding monitored areas in the section 6 of the appendix 2)						
I-131 (about 8 days)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	40
Cs-134 (about 2 years)	ND	-	ND	i	ND	-	ND	-	ND	-	ND	-	60
Cs-137 (about 30 years)	ND	-	ND	i	ND	-	ND	-	ND	-	ND	-	90
Mo-99 (approx. 66hrs)	ND	-	ND	i	ND	-	ND	-	ND	-	ND	-	1,000
Tc-99m (approx.6hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	40,000
Te-129m (approx.34days)	ND	ı	ND	i	ND	-	ND	·	ND	-	ND	-	300
Te- 129(approx.70mins)	ND	ı	ND	i	ND	-	ND	i	ND	-	ND	-	10,000
Te-132 (approx.78hrs)	ND	ı	ND	i	ND	-	ND	i	ND	-	ND	-	200
I-132 (approx.2hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	3,000
Cs-136 (approx.13days)	ND	ı	ND	i	ND	-	ND	i	ND	-	ND	-	300
Ba- 140(approx.13days)	ND	-	ND	i	ND	-	ND	-	ND	-	ND	-	300
La-140 (approx. 40hrs)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	400

^{*} Density by the announcement of Reactor Regulation is stated with an amount converted from Bq/cm3 to Bq/L.

The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 1.0Bq/L, Cs-134: approx. 1.1Bq/L, Cs-137: approx. 1.1Bq/L Please note that these nuclides are sometimes detected even when they are below the limits, contingent on the detector or samples.

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

Place of Sampling	3 km offshore of Ena Port	3 km offshore of Onahama Port			
Time of Sampling	December 5, 2011 13:00	December 5, 2011 13:20			
Detected Nuclides (Half-life)		Radioa	activity Density (Bq/kg • mo	ist soil)	
I-131 (about 8 days)	ND	ND			
Cs-134 (about 2 years)	420	210			
Cs-137 (about 30 years)	500	270			
Mn-54 (approx.310days)	ND	ND			
Co-60 (approx.5yrs)	ND	ND			
Tc-99m (approx.6hrs)	ND	ND			
Ag-110m (approx.250days)	ND	ND			
Sb-125 (approx.3yrs)	ND	ND			
Te-129 (approx.70mins)	ND	ND			
Te-129m (approx.34days)	ND	ND			
Cs-136 (approx.13days)	ND	ND			
Ba-140 (approx.13days)	ND	ND			
La-140 (approx.40hrs)	ND	ND			

^{* &}quot;ND" means the sampled data is below measurable limit.

The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 6Bq/kg· moist soil。

Please note that these nuclides are sometimes detected even when they are below the limits, contingent on the detector or samples.

【Definite Report】 Nuclide analysis results of ocean soil

Place of Sampling	15km offshore of Minami Soma city	5 km offshore of Numanouchi			
Time of Sampling	December 7, 2011 8:15	December 7, 2011 10:45			
Detected Nuclides (Half-life)		Radio	activity Density (Bq/kg • moi	st soil)	
I-131 (about 8 days)	ND	ND			
Cs-134 (about 2 years)	16	20			
Cs-137 (about 30 years)	21	26			
Mn-54 (approx.310days)	ND	ND			
Co-60 (approx.5yrs)	ND	ND			
Tc-99m (approx.6hrs)	ND	ND			
Ag-110m (approx.250days)	ND	ND			
Sb-125 (approx.3yrs)	ND	ND			
Te-129 (approx.70mins)	ND	ND			
Te-129m (approx.34days)	ND	ND			
Cs-136 (approx.13days)	ND	ND			
Ba-140 (approx.13days)	ND	ND			
La-140 (approx.40hrs)	ND	ND			

^{* &}quot;ND" means the sampled data is below measurable limit.

The detection limits of major three nuclide that are not detected are as follows:

Please note that these nuclides are sometimes detected even when they are below the limits, contingent on the detector or samples.

Place of Sampling	8km offshore of Haramachi-ku	3km offshore of Kotaka-ku	8km offshore of Odaka-ku						
Time of Sampling	平成23年12月8日 (Not sampled)	December 8, 2011 (Not sampled)	December 8, 2011 (Not sampled)						
Detected Nuclides (Half-life)	Radioactivity Density (Bq/kg · moist soil)								
I-131 (about 8 days)	-	-	-						
Cs-134 (about 2 years)	-	-	-						
Cs-137 (about 30 years)	-	-	-						
Mn-54 (approx.310days)	-	-	-						
Co-60 (approx.5yrs)	-	-	-						
Tc-99m (approx.6hrs)	-	-	-						
Ag-110m (approx.250days)	-	-	-						
Sb-125 (approx.3yrs)	-	-	-						
Te-129 (approx.70mins)	-	-	-						
Te-129m (approx.34days)	-	-	-						
Cs-136 (approx.13days)	-	-	-						
Ba-140 (approx.13days)	-	-	-						
La-140 (approx.40hrs)	-	-	-						

Place of Sampling	15 km offshore of Ukedo-gawa	15 km offshore of Fukushima Daiichi	15 km offshore of Fukushima Daini							
Time of Sampling	December 10, 2011 9:45	December 10, 2011 9:00	December 10, 2011 8:10							
Detected Nuclides (Half-life)		Radioactivity Density (Bq/kg · moist soil)								
I-131 (about 8 days)	ND	ND	ND							
Cs-134 (about 2 years)	65	100	54							
Cs-137 (about 30 years)	90	120	72							
Mn-54 (approx.310days)	ND	ND	ND							
Co-60 (approx.5yrs)	ND	ND	ND							
Tc-99m (approx.6hrs)	ND	ND	ND							
Ag-110m (approx.250days)	ND	ND	ND							
Sb-125 (approx.3yrs)	ND	ND	ND							
Te-129 (approx.70mins)	ND	ND	ND							
Te-129m (approx.34days)	ND	ND	ND							
Cs-136 (approx.13days)	ND	ND	ND							
Ba-140 (approx.13days)	ND	ND	ND							
La-140 (approx.40hrs)	ND	ND	ND							

^{* &}quot;ND" means the sampled data is below measurable limit.

The detection limits of major three nuclide that are not detected are as follows:

I-131: approx. 4Bq/kg• moist soil。

Please note that these nuclides are sometimes detected even when they are below the limits, contingent on the detector or samples.

Place of Sampling	8km offshore of Haramachi-ku	3km offshore of Kotaka-ku	8km offshore of Odaka-ku							
Time of Sampling	平成23年12月11日 9時50分	平成23年12月11日 9時20分	平成23年12月11日 10時20分							
Detected Nuclides (Half-life)		Radioactivity Density (Bq/kg · moist soil)								
I-131 (about 8 days)	ND	ND	ND							
Cs-134 (about 2 years)	22	25	22							
Cs-137 (about 30 years)	31	35	27							
Mn-54 (approx.310days)	ND	ND	ND							
Co-60 (approx.5yrs)	ND	ND	ND							
Tc-99m (approx.6hrs)	ND	ND	ND							
Ag-110m (approx.250days)	ND	ND	ND							
Sb-125 (approx.3yrs)	ND	ND	ND							
Te-129 (approx.70mins)	ND	ND	ND							
Te-129m (approx.34days)	ND	ND	ND							
Cs-136 (approx.13days)	ND	ND	ND							
Ba-140 (approx.13days)	ND	ND	ND							
La-140 (approx.40hrs)	ND	ND	ND							

 $^{^{\}star}$ "ND" means the sampled data is below measurable limit.

The detection limits of major three nuclide that are not detected are as follows:

I-131: approx. 3Bq/kg• moist soil。

Please note that these nuclides are sometimes detected even when they are below the limits, contingent on the detector or samples.

Place of Sampling	3km offshore of North of Iwaki City	3km offshore of Natsui River	3 km offshore of Numanouchi	3km offshore of Toyoma						
Time of Sampling	December 12, 2011 6:30	December 12, 2011 7:04	December 12, 2011 7:18	December 12, 2011 7:43						
Detected Nuclides (Half-life)		Radioactivity Density (Bq/kg • moist soil)								
I-131 (about 8 days)	ND	ND	ND	ND						
Cs-134 (about 2 years)	100	250	150	310						
Cs-137 (about 30 years)	130	310	200	400						
Mn-54 (approx.310days)	ND ND ND		ND							
Co-60 (approx.5yrs)	ND	ND ND		ND						
Tc-99m (approx.6hrs)	ND	ND	ND	ND						
Ag-110m (approx.250days)	ND	ND	ND	ND						
Sb-125 (approx.3yrs)	ND	ND	ND	ND						
Te-129 (approx.70mins)	ND	ND	ND	ND						
Te-129m (approx.34days)	ND	ND	ND	ND						
Cs-136 (approx.13days)	ND	ND	ND	ND						
Ba-140 (approx.13days)	ND	ND	ND	ND						
La-140 (approx.40hrs)	ND	ND	ND	ND						

 $^{^{\}star}$ "ND" means the sampled data is below measurable limit.

The detection limits of major three nuclide that are not detected are as follows:

I-131: approx. 6Bq/kg• moist soil。

Please note that these nuclides are sometimes detected even when they are below the limits, contingent on the detector or samples.

Place of Sampling	3km offshore of Soma city	5km offshore of Soma city	5km offshore of Kashima							
Time of Sampling	December 13, 2011 8:05	December 13, 2011 7:26	December 13, 2011 7:00							
Detected Nuclides (Half-life)		Radioactivity Density(Bq/kg・moist soil)								
I-131 (about 8 days)	ND	ND	ND							
Cs-134 (about 2 years)	700	32	38							
Cs-137 (about 30 years)	880	34	46							
Mn-54 (approx.310days)	ND	ND	ND							
Co-60 (approx.5yrs)	ND	ND	ND							
Tc-99m (approx.6hrs)	ND	ND	ND							
Ag-110m (approx.250days)	ND	ND	ND							
Sb-125 (approx.3yrs)	ND	ND	ND							
Te-129 (approx.70mins)	ND	ND	ND							
Te-129m (approx.34days)	ND	ND	ND							
Cs-136 (approx.13days)	ND	ND	ND							
Ba-140 (approx.13days)	ND	ND	ND							
La-140 (approx.40hrs)	ND	ND	ND							

^{* &}quot;ND" means the sampled data is below measurable limit.

The detection limits of major three nuclide that are not detected are as follows:

Please note that these nuclides are sometimes detected even when they are below the limits, contingent on the detector or samples.

Place of Sampling	lwasawa Seashoreoffshore 15km	15 km offshore of Hirono-town							
Time of Sampling	December 14, 2011 8:35	December 14, 2011 9:15							
Detected Nuclides (Half-life)		Radioactivity Density (Bq/kg · moist soil)							
I-131 (about 8 days)	ND	ND							
Cs-134 (about 2 years)	110	30							
Cs-137 (about 30 years)	130	43							
Mn-54 (approx.310days)	ND	ND							
Co-60 (approx.5yrs)	ND	ND							
Tc-99m (approx.6hrs)	ND	ND							
Ag-110m (approx.250days)	ND	ND							
Sb-125 (approx.3yrs)	ND	ND							
Te-129 (approx.70mins)	ND	ND							
Te-129m (approx.34days)	ND	ND							
Cs-136 (approx.13days)	ND	ND							
Ba-140 (approx.13days)	ND	ND							
La-140 (approx.40hrs)	ND	ND							

* "ND" means the sampled data is below measurable limit.

The detection limits of major three nuclide that are not detected are as follows:

Please note that these nuclides are sometimes detected even when they are below the limits, contingent on the detector or samples.

【Definite Report】 Nuclide Analysis Results of Radioactive Materials in the Air at upper part of reactor building of Fukushima Daiichi NPS < 1/6 >

Place of Sampling	Upper part of re Unit 3 (nor upper reactor(do	thwest side in part of	Upper part of re Unit 3 (no upper part of rea	rtheast side in	Upper part of reactor building of Unit 3 (northwest side in upper part of reactor(downward))		Density limit in the air to workers
Time of Sampling	Novembe 9:24		Novembe 9:24		Novembe 10:30		engaged in tasks associated with
Detected Nuclides (Half-life)	density of sample (Bq/cm3)	Scaling Factor (/)	density of sample (Bq/cm3)	Scaling Factor (/)	density of sample (Bq/cm3)	Scaling Factor (/)	radiation (Bq/cm3) *
I-131 (about 8 days)	ND	-	ND	-	ND	-	1E-03
Cs-134 (about 2 years)	2.2E-05	0.01	6.6E-03	3.3	7.7E-05	0.04	2E-03
Cs-137 (about 30 years)	2.9E-05	0.01	8.1E-03	2.7	1.1E-04	0.04	3E-03
Nb-95 (approx.35days)	ND	-	ND	-	ND	-	2E-02
Tc-99m (approx.6hrs)	ND	-	ND	-	ND	-	7E-01
Ag-110m (approx.250days)	ND	-	5.9E-05	0.02	ND	-	3E-03
Te-129(approx.70mins)	ND	-	ND	-	ND	-	4E-01
Te-129m (approx.34days)	ND	-	ND	-	ND	-	4E-03
I-132(approx.2hrs)	ND	-	ND	-	ND	-	7E-02
Te-132 (approx.78hrs	ND	-	ND	-	ND	-	4E-03
I-133(approx.21hrs)	ND	-	ND	-	ND	-	5E-03
Cs-136 (approx.13days)	ND	-	ND	-	ND	-	1E-02
Ba-140 (approx.13days)	ND	-	ND	-	ND	-	1E-02
La-140 (approx.40hrs)	ND	-	ND	-	ND	-	1E-02

^{*} The value of radioactivity density is the sum of the value of volatile nuclide's density and the value of particulate nuclide's density.

The detection limits of major three nuclide that are not detected are as follows: Volatile: I-131: approx. 1E-5Bq/cm3, Cs-134: approx. 2E-5Bq/cm3, Cs-137: approx. 3E-5Bq/cm3 Particulate: I-131: approx. 2E-5Bq/cm3 Please note that these nuclides are sometimes detected even when they are below the limits, contingent on the detector or samples.

^{*} O.OE - O means O.O x 10-O

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

【Definite Report】 Nuclide Analysis Results of Radioactive Materials in the Air at upper part of reactor building of Fukushima Daiichi NPS < 2/6 >

Place of Sampling	Unit 3 (nort	actor building of hwest side in actor(sideward))	Upper part of re Unit 3 (sout upper reactor(do	thwest side in part of	Upper part of reactor building of Unit 3 (southwest side in upper part of reactor(sideward))		Density limit in the air to workers	
Time of Sampling	November 10:30-	•	November 11:30-	•	November 11:30-	r 29, 2011 -12:00	engaged in tasks associated with radiation	
Detected Nuclides (Half-life)	density of sample (Bq/cm3)	Scaling Factor (/)	density of sample (Bq/cm3)	Scaling Factor (/)	density of sample (Bq/cm3)	Scaling Factor (/)	(Bq/cm3) *	
I-131 (about 8 days)	ND	-	ND	-	ND	-	1E-03	
Cs-134 (about 2 years)	5.1E-03	2.6	5.7E-05	0.03	1.5E-04	0.08	2E-03	
Cs-137 (about 30 years)	6.3E-03	2.1	5.4E-05	0.02	1.5E-04	0.05	3E-03	
Nb-95 (approx.35days)	ND	-	ND	-	ND	-	2E-02	
Tc-99m (approx.6hrs)	ND	-	ND	-	ND	-	7E-01	
Ag-110m (approx.250days)	5.9E-05	0.02	ND	-	ND	-	3E-03	
Te-129(approx.70mins)	ND	-	ND	-	ND	-	4E-01	
Te-129m (approx.34days)	ND	-	ND	-	ND	-	4E-03	
I-132(approx.2hrs)	ND	-	ND	-	ND	-	7E-02	
Te-132 (approx.78hrs	ND	-	ND	-	ND	-	4E-03	
I-133(approx.21hrs)	ND	-	ND	1	ND	-	5E-03	
Cs-136 (approx.13days)	ND	-	ND	-	ND	-	1E-02	
Ba-140 (approx.13days)	ND	-	ND	-	ND	-	1E-02	
La-140 (approx.40hrs)	ND	-	ND	-	ND	-	1E-02	

^{*} The value of radioactivity density is the sum of the value of volatile nuclide's density and the value of particulate nuclide's density.

The detection limits of major three nuclide that are not detected are as follows: Volatile: I-131: approx. 1E-5Bq/cm3, Cs-134: approx. 2E-5Bq/cm3, Cs-137: approx. 3E-5Bq/cm3 Particulate: I-131: approx. 3E-5Bq/cm3 Please note that these nuclides are sometimes detected even when they are below the limits, contingent on the detector or samples.

^{*} O.OE - O means O.O x 10-O

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

【Definite Report】 Nuclide Analysis Results of Radioactive Materials in the Air at upper part of reactor building of Fukushima Daiichi NPS < 3/6 >

Place of Sampling	Upper part of re Unit 3 (ard hatch in the	ound machine		actor building of d machine hatch st floor)			Density limit in the air to workers	
Time of Sampling	Novembe 12:30		Novembe 12:30-	r 29, 2011 -13:00			engaged in tasks associated with	
Detected Nuclides (Half-life)	density of sample (Bq/cm3)	Scaling Factor (/)	density of sample (Bq/cm3)	Scaling Factor (/)	density of sample (Bq/cm3)	Scaling Factor (/)	radiation (Bq/cm3) *	
I-131 (about 8 days)	ND	-	ND	-			1E-03	
Cs-134 (about 2 years)	2.1E-04	0.11	1.2E-04	0.06			2E-03	
Cs-137 (about 30 years)	2.7E-04	0.09	1.8E-04	0.06			3E-03	
Nb-95 (approx.35days)	ND	-	ND	-			2E-02	
Tc-99m (approx.6hrs)	ND	-	ND	-			7E-01	
Ag-110m (approx.250days)	1.2E-05	0.00	ND	-			3E-03	
Te-129(approx.70mins)	ND	-	ND	-			4E-01	
Te-129m (approx.34days)	ND	-	ND	-			4E-03	
I-132(approx.2hrs)	ND	-	ND	-			7E-02	
Te-132 (approx.78hrs)	ND	-	ND	-			4E-03	
I-133(approx.21hrs)	ND	-	ND	-			5E-03	
Cs-136 (approx.13days)	ND	-	ND	-			1E-02	
Ba-140 (approx.13days)	ND	-	ND	-			1E-02	
La-140 (approx.40hrs)	ND	-	ND	-			1E-02	

^{*} The value of radioactivity density is the sum of the value of volatile nuclide's density and the value of particulate nuclide's density.

The detection limits of major three nuclide that are not detected are as follows: Volatile: I-131: approx. 1E-5Bq/cm3, Cs-134: approx. 2E-5Bq/cm3 Particulate: I-131: approx. 6E-6Bq/cm3

^{*} O.OE - O means O.O x 10-O

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

【 Definite Report 】 Nuclide Analysis Results of Radioactive Materials in the Air at upper part of reactor building of Fukushima Daiichi NPS < 4/6 >

Place of Sampling		actor building of northeast side in upper part of ctor(downward))	Upper part of re Unit 3 (no	actor building of rtheast side in actor(sideward))	Unit 3 (nor	actor building of thwest side in part of ownward))	Density limit in the air to	
Time of Sampling	November 9:00-			November 30, 2011 9:00-9:30		r 30, 2011 ·11:30	workers engaged in tasks associated with radiation (Bg/cm3) *	
Detected Nuclides (Half-life)	density of sample (Bq/cm3)	Scaling Factor (/)	density of sample (Bq/cm3)	Scaling Factor (/)	or sample Factor		(Bq/cm3) *	
I-131 (about 8 days)	ND	-	ND	•	ND	-	1E-03	
Cs-134 (about 2 years)	4.6E-04	0.23	7.8E-04	0.39	4.4E-04	0.22	2E-03	
Cs-137 (about 30 years)	5.9E-04	0.20	9.8E-04	0.33	5.0E-04	0.17	3E-03	
Nb-95 (approx.35days)	ND	-	ND	-	ND	-	2E-02	
Tc-99m (approx.6hrs)	ND	-	ND	-	ND	-	7E-01	
Ag-110m (approx.250days)	ND	-	9.4E-06	0.00	ND	-	3E-03	
Te-129(approx.70mins)	ND	-	ND	-	ND	-	4E-01	
Te-129m (approx.34days)	ND	-	ND	-	ND	-	4E-03	
I-132(approx.2hrs)	ND	-	ND	-	ND	-	7E-02	
Te-132 (approx.78hrs	ND	-	ND	•	ND	-	4E-03	
I-133(approx.21hrs)	ND	-	ND	-	ND	-	5E-03	
Cs-136 (approx.13days)	ND	-	ND	-	ND	-	1E-02	
Ba-140 (approx.13days)	ND	-	ND	-	ND	-	1E-02	
La-140 (approx.40hrs)	ND	-	ND	-	ND		1E-02	

^{*} The value of radioactivity density is the sum of the value of volatile nuclide's density and the value of particulate nuclide's density.

The detection limits of major three nuclide that are not detected are as follows: Volatile: I-131: approx. 1E-5Bq/cm3 Particulate: I-131: approx. 1E-5Bq/cm3

^{*} O.OE - O means O.O x 10-O

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

【Definite Report】 Nuclide Analysis Results of Radioactive Materials in the Air at upper part of reactor building of Fukushima Daiichi NPS < 5/6 >

Place of Sampling	Unit 3 (r	eactor building of northwest side in actor(sideward))	Unit 3 (sou	actor building of thwest side in part of ownward))	Upper part of reactor building of Unit 3 (southwest side in upper part of reactor(sideward))		Density limit in the air to workers engaged in tasks	
Time of Sampling	Novembe (Not sa			November 30, 2011 12:00-12:30		November 30, 2011 12:00-12:30		
Detected Nuclides (Half-life)	density of sample (Bq/cm3)	Scaling Factor (/)	density of sample (Bq/cm3)	Scaling Factor (/)	density of sample (Bq/cm3)	Scaling Factor (/)	radiation (Bq/cm3)*	
I-131 (about 8 days)	-	-	ND	-	ND	-	1E-03	
Cs-134 (about 2 years)	-	-	2.6E-04	0.13	7.0E-04	0.35	2E-03	
Cs-137 (about 30 years)	-	-	3.1E-04	0.10	8.4E-04	0.28	3E-03	
Nb-95 (approx.35days)	-	-	ND	-	ND	-	2E-02	
Tc-99m (approx.6hrs)	-	-	ND	-	ND	-	7E-01	
Ag-110m (approx.250days)	-	-	ND	-	ND	-	3E-03	
Te- 129(approx.70mins)	-	-	ND	-	ND	-	4E-01	
Te-129m (approx.34days)	-	-	ND	-	ND	-	4E-03	
I-132(approx.2hrs)	-	-	ND	-	ND	-	7E-02	
Te-132 (approx.78hrs)	-	-	ND	-	ND	-	4E-03	
I-133(approx.21hrs)	-	-	ND	-	ND	-	5E-03	
Cs-136 (approx.13days)	-	-	ND	-	ND	-	1E-02	
Ba-140 (approx.13days)	-	-	ND	-	ND	-	1E-02	
La-140 (approx.40hrs)	-	-	ND	-	ND	-	1E-02	

^{*} The value of radioactivity density is the sum of the value of volatile nuclide's density and the value of particulate nuclide's density.

The detection limits of major three nuclide that are not detected are as follows: Volatile: I-131: approx. 9E-6Bq/cm3 Particulate: I-131: approx. 9E-6Bq/cm3

^{*} O.OE - O means O.O x 10-O

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

【Definite Report】 Nuclide Analysis Results of Radioactive Materials in the Air at upper part of reactor building of Fukushima Daiichi NPS < 6/6 >

Unit 3 (aro	und machine	Unit 3 (arc	ound machine			Density limit in the air to workers
						engaged in tasks associated with
density of sample (Bq/cm3)	Scaling Factor (/)	density of sample (Bq/cm3)	Scaling Factor (/)	density of sample (Bq/cm3)	Scaling Factor (/)	radiation (Bq/cm3) *
ND	-	ND	-			1E-03
8.5E-05	0.04	1.3E-04	0.07			2E-03
1.0E-04	0.03	1.3E-04	0.04			3E-03
ND	-	ND	-			2E-02
ND	-	ND	-			7E-01
ND	-	ND	-			3E-03
ND	-	ND	-			4E-01
ND	-	ND	-			4E-03
ND	-	ND	-			7E-02
ND	-	ND	-			4E-03
ND	-	ND	-			5E-03
ND	-	ND	-			1E-02
ND	-	ND	-			1E-02
ND	-	ND	-			1E-02
	Unit 3 (aro hatch in the November 10:00-density of sample (Bq/cm3) ND 8.5E-05 1.0E-04 ND ND ND ND ND ND ND ND ND N	Unit 3 (around machine hatch in the 3rd floor) November 30, 2011 10:00-10:30 density of sample (Bq/cm3) ND - 8.5E-05 0.04 1.0E-04 0.03 ND - - ND - - - - - - - - - - - - -	Unit 3 (around machine hatch in the 3rd floor) Unit 3 (around machine hatch in the 3rd floor) Unit 3 (around machine hatch in the	Unit 3 (around machine hatch in the 3rd floor) Unit 3 (around machine hatch in the 1st floor) November 30, 2011 10:00-10:30 November 30, 2011 10:00-10:30 density of sample (Bq/cm3) Scaling Factor (Bq/cm3) Scaling Factor (Bq/cm3) Scaling Factor (Bq/cm3) ND - ND - 8.5E-05 0.04 1.3E-04 0.07 1.0E-04 0.03 1.3E-04 0.04 ND - ND - ND - ND -	November 30, 2011	Unit 3 (around machine hatch in the 3rd floor) November 30, 2011 10:00-10:30 Density of Scaling sample (Bq/cm3) November 30, 2011 10:00-10:30 Density of Scaling sample (Bq/cm3) November 30, 2011 10:00-10:30 Density of Scaling sample (Bq/cm3) November 30, 2011 10:00-10:30 Density of Scaling sample (Bq/cm3) De

^{*} The value of radioactivity density is the sum of the value of volatile nuclide's density and the value of particulate nuclide's density.

The detection limits of major three nuclide that are not detected are as follows: Volatile: I-131: approx. 1E-5Bq/cm3 Particulate: I-131: approx. 6E-6Bq/cm3

^{*} O.OE - O means O.O x 10-O

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

【Definite Report】 Nuclide Analysis Results of Radioactive Materials in the Air at upper part of reactor building of Fukushima Daiichi NPS < 1/5 >

		i icacioi bi					
Place of Sampling		ance of cover	Upper part of rea Unit 1 (entr exhaust sy	ance of cover			Density limit in the air to workers
Time of Sampling	Decembe 4:11-		Decembe 9:03-				engaged in tasks associated with
Detected Nuclides (Half-life)	density of sample (Bq/cm3)	Scaling Factor (/)	density of sample (Bq/cm3)	Scaling Factor (/)	density of sample (Bq/cm3)	Scaling Factor (/)	radiation (Bq/cm3)*
I-131 (about 8 days)	ND	-	ND	-			1E-03
Cs-134 (about 2 years)	2.2E-05	0.01	ND	-			2E-03
Cs-137 (about 30 years)	3.4E-05	0.01	ND	-			3E-03
Nb-95 (approx.35days)	ND	-	ND	-			2E-02
Tc-99m (approx.6hrs)	ND	-	ND	-			7E-01
Ag-110m (approx.250days)	ND	-	ND	-			3E-03
Sb-125 (approx.3yrs)	ND	-	ND	-			6E-03
Te-129(approx.70mins)	ND	-	ND	-			4E-01
Te-129m (approx.34days)	ND	-	ND	-			4E-03
I-132(approx.2hrs)	ND	-	ND	-			7E-02
Te-132 (approx.78hrs)	ND	-	ND	-			4E-03
I-133(approx.21hrs)	ND	-	ND	-			5E-03
Cs-136 (approx.13days)	ND	-	ND	-			1E-02
Ba-140 (approx.13days)	ND	-	ND	-			1E-02
La-140 (approx.40hrs)	ND	-	ND	-			1E-02

^{*} The value of radioactivity density is the sum of the value of volatile nuclide's density and the value of particulate nuclide's density.

The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 1E-6Bq/cm3, Cs-134: approx. 2E-6Bq/cm3, Cs-137: approx. 2E-6Bq/cm3

Please note that these nuclides are sometimes detected even when they are below the limits, contingent on the detector or samples. This is the result of nuclides analysis for aerial radioactive particles

^{*} O.OE - O means O.O x 10-O

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

【Definite Report】 Nuclide Analysis Results of Radioactive Materials in the Air at upper part of reactor building of Fukushima Daiichi NPS < 2/5 >

Place of Sampling	Unit 1 (cover	actor building of north west side ner)	Unit 1 (cover	eactor building of north east side ner)	Upper part of reactor building of Unit 1 (cover south west side corner)		Density limit in the air to workers
Time of Sampling	Decembe 8:16	er 2, 2011 -9:16		er 2, 2011 -8:15	December 9:17-		engaged in tasks associated with radiation
Detected Nuclides (Half-life)	density of sample (Bq/cm3)	Scaling Factor (/)	density of sample (Bq/cm3)	Scaling Factor (/)	density of sample (Bq/cm3)	Scaling Factor (/)	(Bq/cm3) *
I-131 (about 8 days)	ND	-	ND	-	ND	-	1E-03
Cs-134 (about 2 years)	1.8E-05	0.01	1.6E-05	0.01	1.5E-05	0.01	2E-03
Cs-137 (about 30 years)	2.4E-05	0.01	2.4E-05	0.01	1.7E-05	0.01	3E-03
Nb-95 (approx.35days)	ND	-	ND	-	ND	-	2E-02
Tc-99m (approx.6hrs)	ND	-	ND	-	ND	-	7E-01
Ag-110m (approx.250days)	ND	-	ND	-	ND	-	3E-03
Sb-125 (approx.3yrs)	ND	-	ND	-	ND	-	6E-03
Te-129(approx.70mins)	ND	-	ND	-	ND	-	4E-01
Te-129m (approx.34days)	ND	-	ND	-	ND	-	4E-03
I-132(approx.2hrs)	ND	-	ND	-	ND	-	7E-02
Te-132 (approx.78hrs	ND	-	ND	-	ND	-	4E-03
I-133(approx.21hrs)	ND	-	ND	-	ND	-	5E-03
Cs-136 (approx.13days)	ND	-	ND	-	ND	-	1E-02
Ba-140 (approx.13days)	ND	-	ND	-	ND	-	1E-02
La-140 (approx.40hrs)	ND	-	ND	-	ND	-	1E-02

^{*} The value of radioactivity density is the sum of the value of volatile nuclide's density and the value of particulate nuclide's density.

The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 1E-6Bq/cm3

Please note that these nuclides are sometimes detected even when they are below the limits, contingent on the detector or samples. This is the result of nuclides analysis for aerial radioactive particles

^{*} O.OE - O means O.O x 10-O

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

【Definite Report】 Nuclide Analysis Results of Radioactive Materials in the Air at upper part of reactor building of Fukushima Daiichi NPS < 3/5 >

Place of Sampling	Upper part of rea	ce of operation	Upper part of rea Unit 1 (uppe fuel p	r wall of spent			Density limit in the air to workers
Time of Sampling	Decembe 6:14-		Decembe 5:12-				engaged in tasks associated with radiation
Detected Nuclides (Half-life)	density of sample (Bq/cm3)	Scaling Factor (/)	density of sample (Bq/cm3)	Scaling Factor (/)	density of sample (Bq/cm3)	Scaling Factor (/)	(Bq/cm3) *
I-131 (about 8 days)	ND	-	ND	-			1E-03
Cs-134 (about 2 years)	2.1E-05	0.01	3.0E-05	0.02			2E-03
Cs-137 (about 30 years)	3.0E-05	0.01	3.8E-05	0.01			3E-03
Nb-95 (approx.35days)	ND	-	ND	-			2E-02
Tc-99m (approx.6hrs)	ND	-	ND	-			7E-01
Ag-110m (approx.250days)	ND	-	ND	-			3E-03
Sb-125 (approx.3yrs)	ND	-	ND	-			6E-03
Te-129(approx.70mins)	ND	-	ND	-			4E-01
Te-129m (approx.34days)	ND	-	ND	-			4E-03
I-132(approx.2hrs)	ND	-	ND	-			7E-02
Te-132 (approx.78hrs)	ND	-	ND	-			4E-03
I-133(approx.21hrs)	ND	-	ND	-			5E-03
Cs-136 (approx.13days)	ND	-	ND	-			1E-02
Ba-140 (approx.13days)	ND	-	ND	-			1E-02
La-140 (approx.40hrs)	ND	-	ND	-			1E-02

^{*} The value of radioactivity density is the sum of the value of volatile nuclide's density and the value of particulate nuclide's density.

The detection limits of major three nuclide that are not detected are as follows: I-131: approx. 1E-6Bq/cm3
Please note that these nuclides are sometimes detected even when they are below the limits, contingent on the detector or samples. This is the result of nuclides analysis for aerial radioactive particles

^{*} O.OE - O means O.O x 10-O

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

【Definite Report】 Nuclide Analysis Results of Radioactive Materials in the Air at upper part of reactor building of Fukushima Daiichi NPS < 4/5 >

Place of Sampling	Upper part of reaction of the Upper part of the	ge equipment					Density limit in the air to workers
Time of Sampling	Decembe 13:00-						engaged in tasks associated with radiation
Detected Nuclides (Half-life)	density of sample (Bq/cm3)	Scaling Factor (/)	density of sample (Bq/cm3)	Scaling Factor (/)	density of sample (Bq/cm3)	Scaling Factor (/)	(Bq/cm3) *
I-131 (about 8 days)	ND	-					1E-03
Cs-134 (about 2 years)	ND	-					2E-03
Cs-137 (about 30 years)	ND	-					3E-03
Nb-95 (approx.35days)	ND	-					2E-02
Tc-99m (approx.6hrs)	ND	-					7E-01
Ag-110m (approx.250days)	ND	-					3E-03
Sb-125 (approx.3yrs)	ND	-					6E-03
Te-129(approx.70mins)	ND	-					4E-01
Te-129m (approx.34days)	ND	-					4E-03
I-132(approx.2hrs)	ND	-					7E-02
Te-132 (approx.78hrs	ND	-					4E-03
I-133(approx.21hrs)	ND	-					5E-03
Cs-136 (approx.13days)	ND	-					1E-02
Ba-140 (approx.13days)	ND	-					1E-02
La-140 (approx.40hrs)	ND	-					1E-02

^{*} The value of radioactivity density is the sum of the value of volatile nuclide's density and the value of particulate nuclide's density.

The detection limits of major three nuclide that are not detected are as follows: Volatile: I-131: approx. 6E-6Bq/cm3, Cs-134: approx. 2E-5Bq/cm3, Cs-137: approx. 2E-5Bq/cm3 Particulate: I-131: approx. 3E-6Bq/cm3, Cs-134: approx. 9E-6Bq/cm3, Cs-137: approx. 1E-5Bq/cm3

^{*} O.OE - O means O.O x 10-O

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

【Definite Report】 Nuclide Analysis Results of Radioactive Materials in the Air at upper part of reactor building of Fukushima Daiichi NPS < 5/5 >

Place of Sampling	Upper part of reactor building Unit 2 (western central part of blow- pannel) December 2, 2011		Unit (northern centr out pa	2 ral part of blow- nnel)	Upper part of re Unit (bottom part of b	Doneity limit in	
Time of Sampling		er 2, 2011 -14:00		er 2, 2011 -14:00		er 2, 2011 -14:00	associated with radiation
Detected Nuclides (Half-life)	density of sample (Bq/cm3)	Scaling Factor (/)	density of sample (Bq/cm3)	Scaling Factor (/)	density of sample (Bq/cm3)	Scaling Factor (/)	(Bq/cm3) *
I-131 (about 8 days)	ND	-	ND	-	ND	-	1E-03
Cs-134 (about 2 years)	5.9E-05	0.03	4.7E-05	0.02	3.0E-05	0.02	2E-03
Cs-137 (about 30 years)	6.6E-05	0.02	5.8E-05	0.02	3.4E-05	0.01	3E-03
Nb-95 (approx.35days)	ND	-	ND	-	ND	-	2E-02
Tc-99m (approx.6hrs)	ND	-	ND	-	ND	-	7E-01
Ag-110m (approx.250days)	4.7E-06	0.00	1.0E-05	0.00	5.8E-06	0.00	3E-03
Sb-125 (approx.3yrs)	8.5E-06	0.00	ND	-	ND	1	6E-03
Te-129(approx.70mins)	ND	-	ND	-	ND	1	4E-01
Te-129m (approx.34days)	ND	-	ND	-	ND	-	4E-03
I-132(approx.2hrs)	ND	-	ND	-	ND	-	7E-02
Te-132 (approx.78hrs)	ND	-	ND	-	ND	1	4E-03
I-133(approx.21hrs)	ND	-	ND	-	ND	-	5E-03
Cs-136 (approx.13days)	ND	-	ND	-	ND	-	1E-02
Ba-140 (approx.13days)	ND	-	ND	-	ND	-	1E-02
La-140 (approx.40hrs)	ND	-	ND	-	ND	-	1E-02

^{*} The value of radioactivity density is the sum of the value of volatile nuclide's density and the value of particulate nuclide's density.

The detection limits of major three nuclide that are not detected are as follows: Volatile: I-131: approx. 3E-6Bq/cm3 Particulate: I-131: approx. 2E-6Bq/cm3

^{*} O.OE - O means O.O x 10-O

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

【Definite Report】 Nuclide Analysis Results of Radioactive Materials in the Air at upper part of reactor building of Fukushima Daiichi NPS < 1/2 >

Place of Sampling	Upper part of re Unit (north west si building(do	3 ide of reactor	Unit	3 ide of reactor			Density limit in the air to workers
Time of Sampling	December 10:35-		December 10:35	er 5, 2011 -11:05	December 11:35	er 5, 2011 -12:05	engaged in tasks associated with radiation
Detected Nuclides (Half-life)	density of sample (Bq/cm3)	Scaling Factor (/)	density of sample (Bq/cm3)	Scaling Factor (/)	density of sample (Bq/cm3)	Scaling Factor (/)	(Bq/cm3) *
I-131 (about 8 days)	ND	-	ND	-	ND	-	1E-03
Cs-134 (about 2 years)	1.4E-03	0.70	5.4E-02	27	3.8E-04	0.19	2E-03
Cs-137 (about 30 years)	1.7E-03	0.57	6.6E-02	22	4.9E-04	0.16	3E-03
Co-60 (approx.5yrs)	ND	-	2.1E-05	0.02	ND	-	1E-03
Nb-95 (approx.35days)	ND	-	ND	-	ND	-	2E-02
Tc-99m (approx.6hrs)	ND	-	ND	-	ND	-	7E-01
Ag-110m (approx.250days)	ND	-	7.5E-04	0.25	ND	-	3E-03
Sb-125 (approx.3yrs)	ND	-	2.6E-04	0.04	ND	-	6E-03
Sn-113 (約120日)	ND	-	2.5E-04	0.03	1.0E-05	0.00	1E-02
Te-129(approx.70mins)	ND	-	ND	-	ND	-	4E-01
Te-129m (approx.34days)	ND	-	4.1E-03	1.0	2.2E-04	0.06	4E-03
I-132(approx.2hrs)	ND	-	ND	-	ND	-	7E-02
Te-132 (approx.78hrs	ND	-	ND	-	ND	-	4E-03
I-133(approx.21hrs)	ND	-	ND	-	ND	-	5E-03
Cs-136 (approx.13days)	ND		ND	-	ND	-	1E-02
Ba-140 (approx.13days)	ND	-	ND	-	ND	-	1E-02
La-140 (approx.40hrs)	ND	-	ND	-	ND	-	1E-02

^{*} The value of radioactivity density is the sum of the value of volatile nuclide's density and the value of particulate nuclide's density.

The detection limits of major three nuclide that are not detected are as follows: Volatile: I-131: approx. 3E-5Bq/cm3 Particulate: I-131: approx. 9E-5Bq/cm3

^{*} O.OE - O means O.O x 10-O

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

【 Definite Report 】 Nuclide Analysis Results of Radioactive Materials in the Air at upper part of reactor building of Fukushima Daiichi NPS < 2/2 >

Place of Sampling	Upper part of re Unit	de of reactor					Density limit in the air to workers engaged in tasks	
Time of Sampling	December 11:35						associated with	
Detected Nuclides (Half-life)	density of sample (Bq/cm3)	Scaling Factor (/)	density of sample (Bq/cm3)	Scaling Factor (/)	density of sample (Bq/cm3)	Scaling Factor (/)	(Bq/cm3) *	
I-131 (about 8 days)	ND	-					1E-03	
Cs-134 (about 2 years)	2.7E-04	0.14					2E-03	
Cs-137 (about 30 years)	3.5E-04	0.12					3E-03	
Co-60 (approx.5yrs)	ND	-					1E-03	
Nb-95 (approx.35days)	ND	-					2E-02	
Tc-99m (approx.6hrs)	ND	-					7E-01	
Ag-110m (approx.250days)	ND	-					3E-03	
Sb-125 (approx.3yrs)	ND	-					6E-03	
Sn-113 (approx.120days)	ND	-					1E-02	
Te-129(approx.70mins)	ND	-					4E-01	
Te-129m (approx.34days)	ND	-					4E-03	
I-132(approx.2hrs)	ND	-					7E-02	
Te-132 (approx.78hrs)	ND	-					4E-03	
I-133(approx.21hrs)	ND	-					5E-03	
Cs-136 (approx.13days)	ND	-					1E-02	
Ba-140 (approx.13days)	ND	-					1E-02	
La-140 (approx.40hrs)	ND						1E-02	

^{*} The value of radioactivity density is the sum of the value of volatile nuclide's density and the value of particulate nuclide's density.

The detection limits of major three nuclide that are not detected are as follows: Volatile: I-131: approx. 1E-5Bq/cm3 Particulate: I-131: approx. 7E-6Bq/cm3

^{*} O.OE - O means O.O x 10-O

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

【Definite Report】 Nuclide Analysis Results of Radioactive Materials in the Air at upper part of reactor building of Fukushima Daiichi NPS

Place of Sampling	Upper part of re- Unit (western centra out pa	2 al part of blow-	Upper part of re Unit (northern centr out pa	2 al part of blow-	Upper part of reactor building of Unit 2 (bottoml part of blow-out pannel)		Density limit in the air to workers	
Time of Sampling	December 6, 2011 8:25-10:25			December 6, 2011 8:25-10:25		er6,2011 data ument failure	engaged in tasks associated with radiation	
Detected Nuclides (Half-life)	density of sample (Bq/cm3)	Scaling Factor (/)	density of sample (Bq/cm3)	Scaling Factor (/)	density of sample (Bq/cm3)	Scaling Factor (/)	(Bq/cm3) *	
I-131 (about 8 days)	ND	-	ND	-	-	-	1E-03	
Cs-134 (about 2 years)	5.4E-06	0.00	ND	-	-	1	2E-03	
Cs-137 (about 30 years)	8.2E-06	0.00	ND	-	-	-	3E-03	
Nb-95 (approx.35days)	ND	-	ND	-	-	-	2E-02	
Tc-99m (approx.6hrs)	ND	-	ND	-	-	-	7E-01	
Ag-110m (approx.250days)	ND	-	ND	-	-	-	3E-03	
Te-129(approx.70mins)	ND	-	ND	-	-	•	4E-01	
Te-129m (approx.34days)	ND	•	ND	-	-	1	4E-03	
I-132(approx.2hrs)	ND	•	ND	-	-	1	7E-02	
Te-132 (approx.78hrs)	ND	-	ND	-	-	-	4E-03	
I-133(approx.21hrs)	ND	-	ND	-	-	-	5E-03	
Cs-136 (approx.13days)	ND	-	ND	-	-	-	1E-02	
Ba-140 (approx.13days)	ND	-	ND	-	-	-	1E-02	
La-140 (approx.40hrs)	ND	-	ND	-	-	-	1E-02	

^{*} The value of radioactivity density is the sum of the value of volatile nuclide's density and the value of particulate nuclide's density.

The detection limits of major three nuclide that are not detected are as follows: Volatile: I-131: approx. 3E-6Bq/cm3, Cs-134: approx. 8E-6Bq/cm3, Cs-137: approx. 9E-6Bq/cm3 Particulate: I-131: approx. 2E-6Bq/cm3, Cs-134: approx. 5E-6Bq/cm3

SE-6Bq/cm3

Volatile: I-131: approx. 2E-6Bq/cm3, Cs-134: approx. 2E-6Bq/cm3, Cs-134: approx. 2E-6Bq/cm3, Cs-137: approx. 5E-6Bq/cm3

^{*} O.OE - O means O.O x 10-O

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

【Definite Report】 Nuclide Analysis Results of Radioactive Materials in the Air at upper part of reactor building of Fukushima Daiichi NPS < 1/2 >

Place of Sampling	Unit (north east s	-	Unit (north east s		Upper part of reactor building of Unit 3 (north east side of reactor building(downward))		Density limit in the air to workers	
Time of Sampling	Decembe 9:00-		Decembe 9:00	r 10, 2011 -9:30	Decembe 10:00	r 10, 2011 -10:30	engaged in tasks associated with	
Detected Nuclides (Half-life)	density of sample (Bq/cm3)	Scaling Factor (/)	density of sample (Bq/cm3)	Scaling Factor (/)	density of sample (Bq/cm3)	Scaling Factor (/)	radiation (Bq/cm3) *	
I-131 (about 8 days)	ND	-	ND	-	ND	-	1E-03	
Cs-134 (about 2 years)	5.0E-04	0.25	4.5E-04	0.23	5.9E-04	0.30	2E-03	
Cs-137 (about 30 years)	6.6E-04	0.22	5.5E-04	0.18	7.4E-04	0.25	3E-03	
Co-60 (approx.5yrs)	ND	-	ND	-	ND	-	1E-03	
Nb-95 (approx.35days)	ND	-	ND	-	ND	-	2E-02	
Tc-99m (approx.6hrs)	ND	-	ND	-	ND	-	7E-01	
Ag-110m (approx.250days)	ND	-	ND	-	ND	-	3E-03	
Sb-125 (approx.3yrs)	ND	-	ND	-	ND	-	6E-03	
Sn-113 (approx.120days)	ND	-	ND	-	ND	-	1E-02	
Te-129(approx.70mins)	ND	-	ND	-	ND	-	4E-01	
Te-129m (approx.34days)	ND	-	ND	-	ND	-	4E-03	
I-132(approx.2hrs)	ND	-	ND	-	ND	-	7E-02	
Te-132 (approx.78hrs	ND	-	ND	-	ND	-	4E-03	
I-133(approx.21hrs)	ND	-	ND	-	ND	-	5E-03	
Cs-136 (approx.13days)	ND	-	ND	-	ND	-	1E-02	
Ba-140 (approx.13days)	ND	-	ND	-	ND	-	1E-02	
La-140 (approx.40hrs)	ND	-	ND	-	ND	-	1E-02	

^{*} The value of radioactivity density is the sum of the value of volatile nuclide's density and the value of particulate nuclide's density.

The detection limits of major three nuclide that are not detected are as follows: Volatile: I-131: approx. 1E-5Bq/cm3 Particulate: I-131: approx. 9E-6Bq/cm3

^{*} O.OE - O means O.O x 10-O

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.

【Definite Report】 Nuclide Analysis Results of Radioactive Materials in the Air at upper part of reactor building of Fukushima Daiichi NPS < 2/2 >

Place of Sampling	Upper part of reactor building of Unit 3 (north east side of reactor building(sideward)) December 10, 2011						Density limit in the air to workers
Time of Sampling	10:00-						engaged in tasks associated with
Detected Nuclides (Half-life)	density of sample (Bq/cm3)	Scaling Factor (/)	density of sample (Bq/cm3)	Scaling Factor (/)	density of sample (Bq/cm3)	Scaling Factor (/)	radiation (Bq/cm3) *
I-131 (about 8 days)	ND	-					1E-03
Cs-134 (about 2 years)	8.8E-04	0.44					2E-03
Cs-137 (about 30 years)	1.1E-03	0.37					3E-03
Co-60 (approx.5yrs)	ND	-					1E-03
Nb-95 (approx.35days)	ND	-					2E-02
Tc-99m (approx.6hrs)	ND	-					7E-01
Ag-110m (approx.250days)	1.5E-05	0.01					3E-03
Sb-125 (approx.3yrs)	ND	-					6E-03
Sn-113 (approx.120days)	1.4E-05	0.00					1E-02
Te-129(approx.70mins)	ND	-					4E-01
Te-129m (approx.34days)	ND	-					4E-03
I-132(approx.2hrs)	ND	-					7E-02
Te-132 (approx.78hrs)	ND	-					4E-03
I-133(approx.21hrs)	ND	-					5E-03
Cs-136 (approx.13days)	ND	-					1E-02
Ba-140 (approx.13days)	ND	-					1E-02
La-140 (approx.40hrs)	ND	-					1E-02

^{*} The value of radioactivity density is the sum of the value of volatile nuclide's density and the value of particulate nuclide's density.

The detection limits of major three nuclide that are not detected are as follows: Volatile: I-131: approx. 1E-5Bq/cm3 Particulate: I-131: approx. 1E-5Bq/cm3

^{*} O.OE - O means O.O x 10-O

^{*} In the case that two or more kinds of nuclides exist, sum of each scaling factor to the density limit is compared with 1.

^{* &}quot;ND" means the sampled data is below measurable limit.