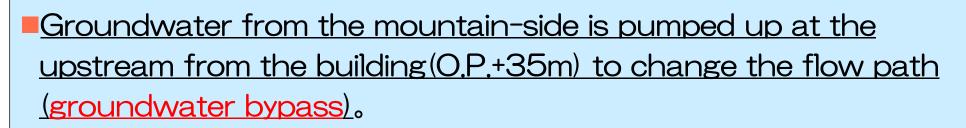
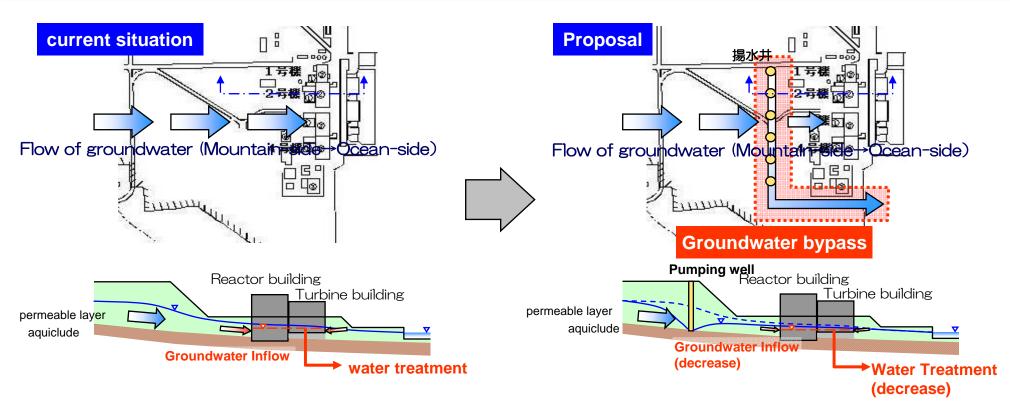
[Reference - 1]

Progress Status of "Drastic Countermeasures Preventing Groundwater Inflow into Reactor Buildings etc."


1Progress Status of the Groundwater Bypass

②Progress Status of the Sub-drain Purification Test

June 18, 2012 Tokyo Electric Power Company


The Sub-drain Reinforcements Underway

To lower the groundwater level surrounding the building (mainly the mountainside) via the groundwater bypass and mitigate the amount of groundwater inflow into the building.

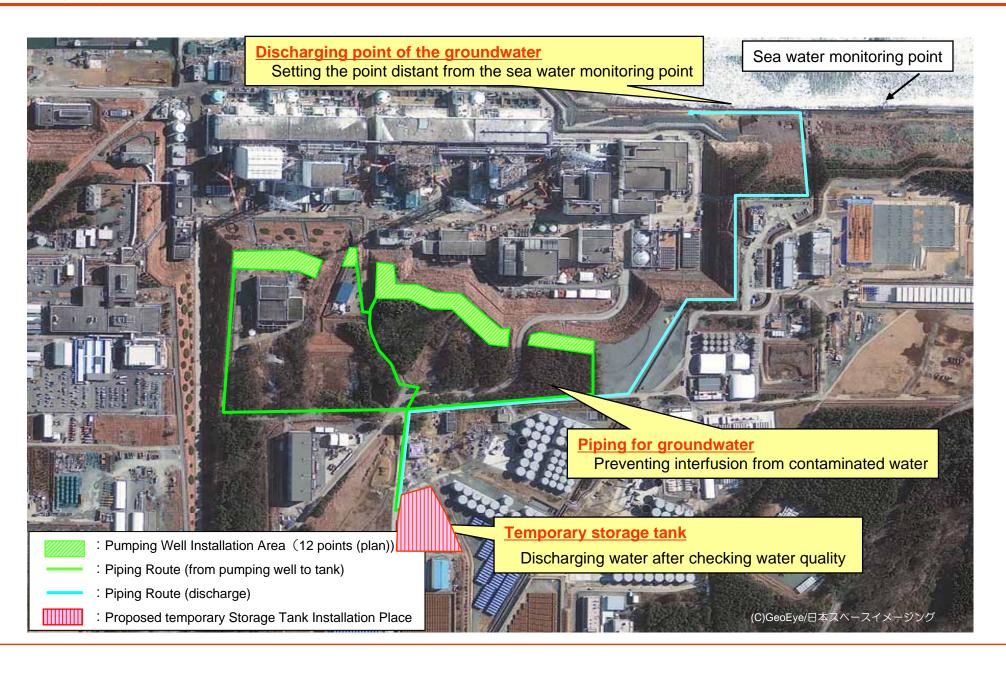
Pumped up water is redirected into the sea via a dedicated water path. We are also monitoring the water quality.

1 Progress Status of Groundwater Bypass Concept (Source:4/23briefing material)

- Groundwater mainly flows from the permeable layers of the mountain-side towards the ocean-side.
- In the course of flowing into the sea, a part of the groundwater flows into the building. →Increase of accumulated water in the building
- Mitigation of groundwater inflow into the building, the sub-drain is under rehabilitation.

Groundwater from the mountain-side is pumped up at the upstream area from the building and changes its flow path.

(groundwater bypass)

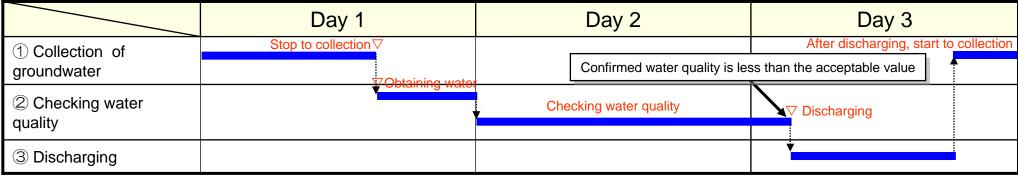

- To lower the groundwater level surrounding the building (mainly the mountainside) via the groundwater bypass and mitigate the amount of groundwater inflow into the building.
- Continuation of sub-drain rehabilitation.

①Progress Status of Groundwater Bypass Schedule (tentative)

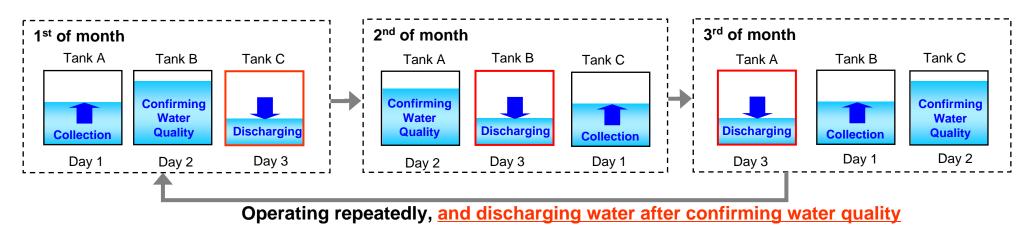
lten	FY 2012									FY 2013			
		5 6		7	8	9	10	11	12	1	2	З	1 st half
Previous check of the groundwater	Current water quality evaluation												
quality	Water quality survey												
Detailed	Design												
Tank Inst	allation								malor		tha i	not	
	Preparation (tree trimming etc.)			,			_ wo	rk and	d opei	atior	ns, a	fter	allation obtaining parties.
Installation work of	Water Pumping Well Installation		i										
groundwater bypass	Ancillary Facility Installation		Present						I				
Dypass	Check the water quality of the water pumping well												
Operation of the Groundwater Bypass						(cc	ntinu	ation c	f imple	men	tatio	n of	r quality check water monitor
Improvement of the Water Level (lower) around the Building													water level

З

(1) Progress Status of Groundwater Bypass Facility layout



■Basic policy


• The pumped groundwater is collected temporarily and discharged into the sea after checking water quality.

• The acceptable water quality value should be confirmed in accordance with the various regulation values of the concentration of radioactive cesium, water quality and the accuracy of the assayed standard of public water and measurable limits of normal monitoring in addition to obtaining the consent of relevant parties.

■Operating cycle

• Operations per a three sets imes three days cycle, and discharging water after confirming water quality

①Progress Status of Groundwater Bypass <Reference> Current situation of the quality of ground water

- According to the analysis based on the detection limit of 1Bq/L, Cs-134 and Cs-137 was not detected.

- Analysis presently underway by decreasing the detection limit.

<u>Detected nuclides</u>: All nuclides, all α nuclides, all β nuclides and tritium <u>Analysis result</u>: All γ nuclides, all α nuclides, all β nuclides were below the detection limit*. *The detection limit: All α =3.0Bq/L, All β =6.7Bq/L

Regarding Cs-134 and Cs-137, refer to the table below.

Analysis result of Cs-134 and Cs-137 (Upper: detected on Feb 21-22, 2012, lower: May 24, 2012) (Bg/L)

Location				Cs-134	Cs-137										
Ð	12.0	_	03	0.85 or less	1.0 or less										
\cup	12.5		9.0	0.76 or less	0.87 or less										
\bigcirc	26.0	-	445	0.92 or less	1.0 or less										
(2)	20.0		14.5	0.87 or less	0.91 or less										
1	447	-	10.0	0.86 or less	1.0 or less										
	14.7		13.9	0.84 or less	0.95 or less										
2	0F 7	-	18.1	0.90 or less	1.1 or less										
	25.7			1.2 or less	0.91 or less										
1											40.4	-	0.5	0.89 or less	0.96 or less
	13.4		9.5	0.71 or less	0.99 or less										
2	20.2	-	10.4	0.80 or less	0.96 or less										
	(2) 26.3		18.4	0.94 or less	1.0 or less										
	 (1) (2) (1) (2) (2) (3) (4) (4) (5) (6) (7) (7) (8) (9) (9)	Image: matrix of the second system Image: matrix of the second system Image: matrix of the second system Image: matrix of the second system Image: matrix of the second system Image: matrix of the second system Image: matrix of the second system Image: matrix of the second system Image: matrix of the second system Image: matrix of the second system Image: matrix of the second system Image: matrix of the second system Image: matrix of the second system Image: matrix of the second system Image: matrix of the second system Image: matrix of the second system Image: matrix of the second system Image: matrix of the second system Image: matrix of the second system Image: matrix of the second system Image: matrix of the second system Image: matrix of the second system Image: matrix of the second system Image: matrix of the second system Image: matrix of the second system Image: matrix of the second system Image: matrix of the second system Image: matrix of the second system Image: matrix of the second system Image: matrix of the second system Image: matrix of the second system Image: matrix of the second system Image: matrix of the second system Image: matrix of the second system Image: matrix of the second system Image: matrix of the second system Image: matrix of the second sys	On (O.P.m ① 12.9 ② 26.0 ① 14.7 ② 25.7 ① 13.4	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c cccc} \text{O.P.m} & \text{CS-134} \\ \hline & (O.P.m) & 0.85 \text{ or less} \\ \hline & 12.9 & - & 9.3 \\ \hline & 12.9 & - & 9.3 \\ \hline & 0.85 \text{ or less} \\ \hline & 0.92 \text{ or less} \\ \hline & 0.87 \text{ or less} \\ \hline & 0.87 \text{ or less} \\ \hline & 0.86 \text{ or less} \\ \hline & 0.84 \text{ or less} \\ \hline & 0.84 \text{ or less} \\ \hline & 0.90 \text{ or less} \\ \hline & 0.90 \text{ or less} \\ \hline & 1.2 \text{ or less} \\ \hline & 1.2 \text{ or less} \\ \hline & 1.2 \text{ or less} \\ \hline & 0.89 \text{ or less} \\ \hline & 0.89 \text{ or less} \\ \hline & 0.80 \text{ or less} \\ \hline & 0.80 \text{ or less} \\ \hline & 0.80 \text{ or less} \\ \hline \end{array} $										

Detection of tritium

• At Point A and Point C, tritium was not detected. At Point C, low concentration (*only approx. one several hundredths of the density has been measured*) tritium was detected.

Point

Point C

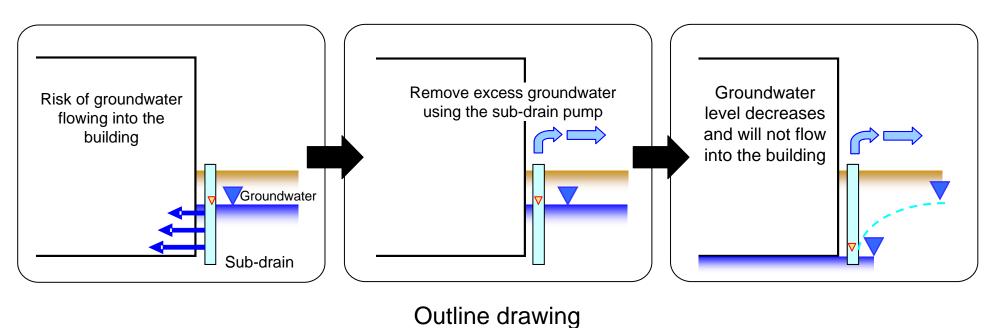
Location for investigation

1111.

- We consider it clear that the contaminated water was not mixed in with the ground water. There are three reasons; the tritium was detected from only some points with low concentration, the ground water was from a higher place than the turbine building, and other nuclides were not detected.
- After the power plant accident, it can be assumed that the tritium was discharged as steam, descended to ground level and then penetrated. We will continue to monitor the situation.

(Upper: detected on Feb 21-22, 2012, lower: May 24, 2012) (Bq/L)

Locatio	n	Target depth	Tritium				
		14.7 -	13.9	12			
Point B	\cup	14.7 -	13.9	61			
FUILD	2	25.7 -	18.1	70			
		23.7 -	10.1	180			
(Published intensity of tritium: 60 000Ba/L)							


	Maedagawa River (Futaba-cho, Namie-machi)	Mar. 4, 2012: 1 Bq/L				
River water	Uedogawa River (Namie-machi)	Mar. 4, 2012: 1 Bq/L or less				
(Data from Ministry of	Kumagawa River (Okuma-machi)	Mar. 4, 2012: 1 Bq/L or less				
Environment)	Tomiokakawa River (Tomioka- machi)	Mar. 4, 2012: 1 Bq/L or less				
	Kidokawa River (Kawauchi-mura, Naraha-machi)	Mar. 4, 2012: 1 Bq/L or less				
Sea water	Fukushima Daini (North Discharge Canal)	Average in Mar. 2012: 0.49Bq/L (Cs-137)				
(Data from TEPCO)	Iwasawa Coast	Average in Mar. 2012: 0.43Bq/L (Cs-137)				

② Progress Status of the Sub-drain Purification Test

The purpose of sub-drain is to maintain the optimum groundwater level and prevent groundwater from flowing into the building by removing excess groundwater using the pump equipped in the sub-drain pit.

Inside of sub-drain pit

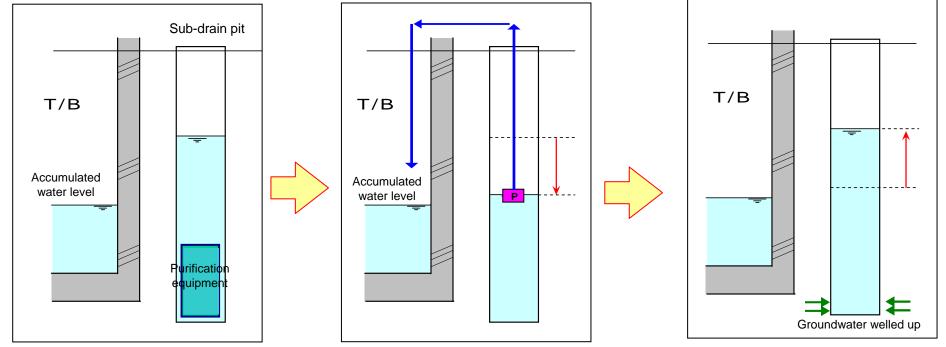
8

2 Progress Status of Sub-drain the Purification Test: Sub-drain Purification Test

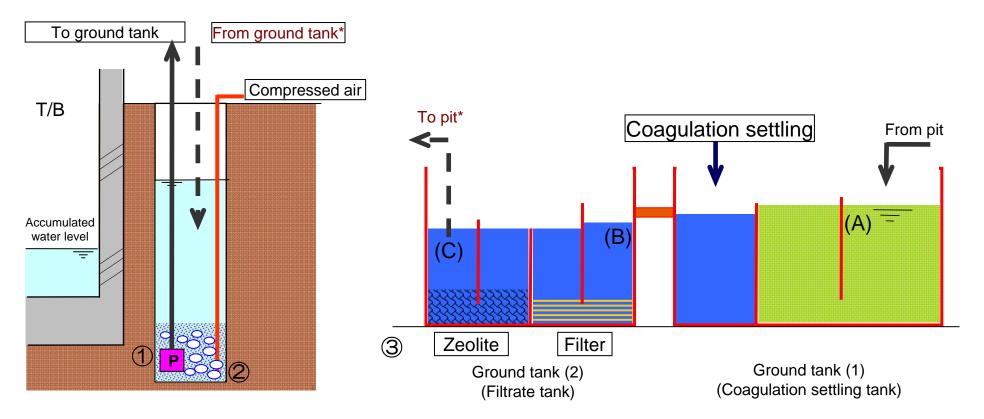
9

Small contamination was found in the water in the sub-drain pit as the contaminated rainwater flowed into the pit from the ground surface after the pit lids were opened by Tsunami. "Purification test" and "pumping test" are planned prior to restarting the sub-drain as the water accumulated in the sub-drain pit must be purified.

Sub-drain Purification Test Procedure

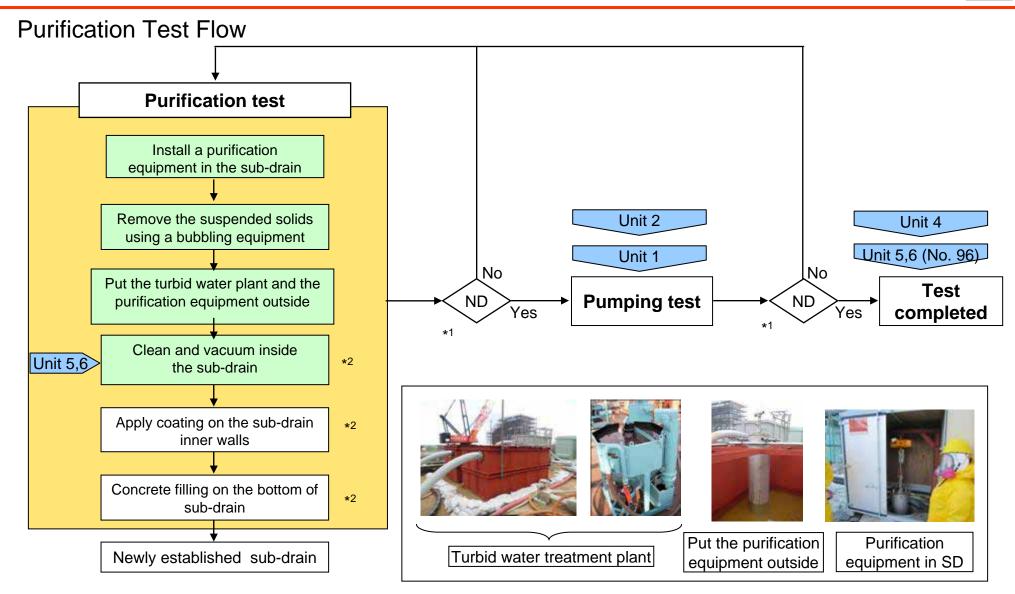

Purification Test

1. Purify the sub-drain water using a purification equipment and confirm that the radioactive density of the water is under the detection limit.


2. Reduce the accumulated water level down to the same level as that in T/B (Pump the water out to T/B).

Pumping Test

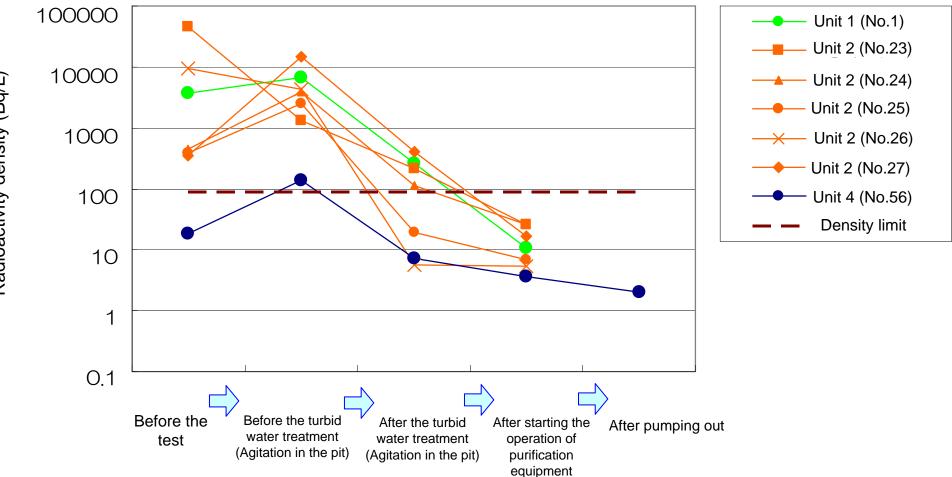
3. Confirm the property of the groundwater welled up



② Progress Status of the Sub-drain Purification Test: Suspended Solids Removal

- 1. Install a pump near the bottom of the pit to pump out the settled sediment and suspended solids.
- 2. Modify the tip of the bubbling equipment to enhance the agitation efficiency
- 3. In addition to the ordinary coagulation settling, filtrate the water going back into the pit using zeolite.
- 4. Confirm that the amount of suspended solids in the pit is less than approx. 5mg/L (Measure the radioactive density as well).
- 5. Purify the ionized radioactive materials using UD.

② Progress Status of the Sub-drain Purification Test: Test Progress Outline



*¹ The measurement value must be far below the density limit.

*² Applied to Unit 5 and 6 only as all the accumulated water can be pumped out in these units.

2 Progress Status of the Sub-drain Purification Test: Radioactive Density Before and 12 **After the Sub-drain Purification Test**

Change in radioactivity density (C-137) in each step of the purification test

Radioactivity density (Bq/L)

② Progress Status of the Sub-drain Purification Test: Test Progress Outline

	Achievements	Future schedule
Unit 1	-After the purification by the purification equipment was completed, the pumping test was started on June 1. -Pumping may need a substantial amount of time	 Complete the pumping test and the analysis of main nuclides by mid June. Detailed nuclides analysis to be done (Planned to be completed in August or later).
	considering that the pit water level is low.*1 -The schedule has been delayed as the suspended solids removal took more time than expected.	-Complete the pumping test and the analysis of main nuclides by mid June.
Unit 2	Purification using the purification equipment started on May 29. -Pumping test stated on June 13.	-Detailed nuclides analysis to be done (Planned to be completed in August or later).
Unit 3		surrounding area of sub-drain pit was high (5-7mSv/h)
Unit 4	<u>-Purification test completed (May 17)</u> -The radioactivity density of the pumped out groundwater was in the level of a few Bq/L (main nuclides)	-Detailed nuclides analysis to be done (Planned to be completed in August or later).
Unit 5,6	-In 23 out of 27 pits, the radioactivity densities of main nuclides were 10Bq/L or less (in 4 of these pits, the densities were 1Bq/L or less) (March 15). -The cleaning method was improved* ² for No.96 sub- drain, and later the radioactivity density of main nuclides was 1Bq/L or less (June 5).	-As the cleaning of No.96 pit was completed, a ground tank for pumping our the water will be prepared by the end of June. Cleaning of pits will be completed by the end of August.

*¹ The pumping tests for Unit 1-4 sub-drains are being conducted while maintaining the pit water level at OP+4000 (controlled water level). The current pit water level is approx. OP+4200.

*² High-pressure water cleaning in the pit and suspended solids removal are done after making the pit empty.

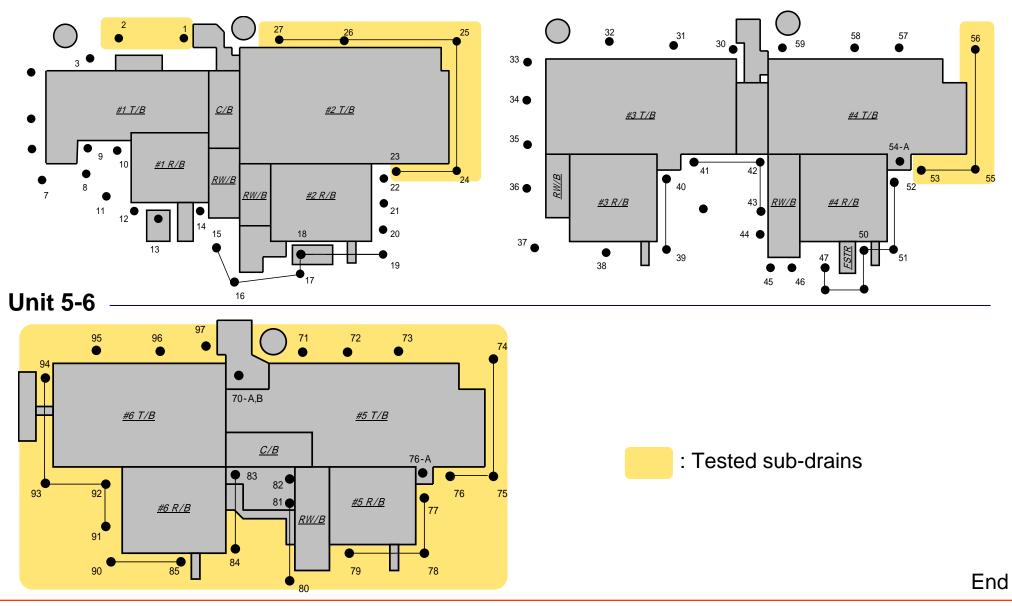
② Progress Status of the Sub-drain Purification Test: Test Results (Unit 1-4)

Upper : Radioactivity density (Bq/L) / Lo									ower (in pare	ntheses): Sa	mpling date	
	Main nuclides *	Unit 1	it 1 Unit 2						Unit 4			
Main nuclides *1			No.1	No.23	No.24	24 No.25 No.26 No.27		No.53	No.55	No.56		
		Before	2,313	37,120	335	296	7,012	271	17	49	13	
	Cs-134	test	(3/15)	(10/21)	(1/17)	(1/17)	(10/25)	(1/17)	(3/15)	(1/20)	(1/20)	
	05-134	After test			Mid	June			1.7	2.0	0.89	
		Allel lesi			IVIIG	June			(5/17)	(5/17)	(5/17)	
r	Cs-137	Before test	3,661 (3/15)	46,180 (10/21)	451 (1/17)	384 (1/17)	9,630 (10/25)	358 (1/17)	11 (3/15)	61 (1/20)	18 (1/20)	
, nuclides	05-137	After test			Mid	luno			2.6	3.4	2.0	
(18)		Aller lest	Mid June					(5/17)	(5/17)	(5/17)		
(10)	I-131	After test	Mid June						< 0.31	< 0.79	< 0.34	
	1 101									(5/17)	(5/17)	
	Other γ nuclides ① (15) Fe-59, Co-58,Y-91, Nb-95, Ru-103, Ag-110m, Sb-124, Cs-136, Ba-140, Ce-141, Ce-144, Pr-144, Mn-54, Co-60, Zn-65		Mid June						Below th	e detection limit *2 (5/17)		
All α All β Tritium									< 11.6 (6/5)	< 11.6 (6/5)	< 11.6 (6/5)	
				Mid June					< 24.4	< 26.1	< 26.1	
					IVIIC	UUIIG			(6/5)	(6/5)	(6/5)	
									3826	6114	5430	
								(6/5)	(6/5)	(6/5)		

*1 The detailed analysis of other nuclides will be completed in August or later.

*2 The detection limit may vary depending on the types of nuclides.

	Cub drain No	Radioac	tivity density (Un	it: Bq/L)		Sub-drain No.	Radioactivity density (Unit: Bq/L)				
	Sub-drain No.	Cs-134	Cs-137	I-131		Sub-urain No.	Cs-134	Cs-137	I-131		
Unit	71	1.1	2.4	< 0.7	Unit	84	< 0.7	< 0.8	< 0.7		
5	72	2.9	3.2	< 0.7	6	85	0.8	1.5	< 0.7		
	73	6.5	8.9	< 0.9		86	1.5	1.8	< 0.8		
	74	< 0.7	1.0	< 0.7		87	< 0.7	2.1	< 0.7		
	75	1.5	1.6	< 0.7		88	1.1	1.3	< 0.7		
	76	Sampling wa	as not done due t	o obstacles		89	2.0	3.1	< 0.7		
	77	72.3	104.9	< 2.0		90	1.3	1.9	< 0.7		
	78	29.9	39.9	< 1.3		91	6.4	7.9	< 0.9		
	79	16.3	22.3	< 1.1		92	1.0	2.1	< 0.8		
	80	1.4	1.9	< 0.7		93	1.9	3.2	< 0.8		
	81	< 0.7	< 0.8	< 0.6		94	2.1	2.2	< 0.8		
	82	1.5	1.7	< 0.7		95	< 0.8	1.1	< 0.9		
	83	2.3	3.3	< 0.8		96	3.6	4.6	< 0.6		
						96 (After cleaning)*	< 0.7	< 0.9	< 0.4		
						97	< 0.7	< 0.8	< 0.8		


Data acquired on March 14-15 unless otherwise specified.

* Water analysis result acquired on May 30 after the pit cleaning was completed.

② Progress Status of the Sub-drain Purification Test: (Reference) Sub-drain pits

Unit 1-4

