Plant Status of Fukushima Daiichi Nuclear Power Station

February 22, 2012
Tokyo Electric Power Company

<1. Status of the Nuclear Reactor and the Primary Containment Vessel> (As of February 22 at 11:00 am)

Unit	Status of Water injection		Bottom temperature of Reactor pressure vessel	Pressure of primary containment vessel	Hydrogen density Of Primary containment vessel
Unit 1	Injecting Fresh water	Core Spray System: Approx. 1.8 m ³ /h	24.2 °C	107.6k Paabs	0.00 vol%
		Feed Water System: Approx. 4.6 m ³ /h			
Unit 2	Injecting Fresh water	Core Spray System: Approx.6.0 m ³ /h	36.3 °C	114k Paabs	0.08 vol%
		Feed Water System: Approx. 4.0 m ³ /h			
Unit 3	Injecting Fresh water	Core Spray System: Approx. 5.1 m ³ /h	50.9 °C	101.6k Paabs	
		Feed Water System: Approx. 1.8 m ³ /h			

(Unit 2)

• With regard to the water injection volume for Unit 2 reactor, which was increased with temperature figure raising, we have gradually adjusted it to the original volume before temperature increasing (Feed water system: approx. 3.0m³/h, core spray system: approx. 6.0m³/h) As no abnormality has been observed in the variation of the plant parameter after the change in the flow rate on February 20, at 7:44 pm on February 21, we changed the water injection volume from feed water system from approx.5.5m³/h to approx. 4.0m³/h (The water injection level from core spray system is continuing at approx. 6.0m³/h)

[Unit 4] [Unit 5] [Unit 6]

No significant incidents have happened.

<2. Status of the Spent Fuel Pool> (As of February 22 at 11:00 am)

Unit	Cooling type	Status of cooling	Temperature of water in Spent Fuel Pool	
Unit 1	Circulating Cooling System	Under operation*	26.0 °C	
Unit 2	Circulating Cooling System	Under operation	13.1 ℃	
Unit 3	Circulating Cooling System	Under operation	13.5 °C	
Unit 4	Circulating Cooling System	Under operation	25 °C	

^{*} System secondary air fin cooler: out of service

[Unit 2]

• Desalination equipment has been activated in order to reduce density of salt from the spent fuel pool since 11:50 am on January 19.

(Unit 3)

- Radioactive material removal equipment has been activated in order to remove radioactive materials from the spent fuel pool since 3:18 pm on January 14.
- <3. Status of water transfer from the Vertical Shaft of the Trench and the basement floor of the Turbine Building>

Unit	Draining water source	Place transferred	Status
Unit 2	Unit 2 T/B	Central Radioactive Waste Treatment Facility [Miscellaneous Solid Waste Volume Reduction Treatment Building(High Temperature Incinerator Building)]	9:39 am on February 20 – Transferring
Unit 3	Unit 3 T/B	Central Radioactive Waste Treatment Facility [Miscellaneous Solid Waste Volume Reduction Treatment Building(High Temperature Incinerator Building)]	9:30 am on February 20 - Transferring

• From 9:43 am – 3:58 pm on February 22, we transferred the accumulated water from circulating water pump discharge valve pit of Unit 2 to the basement of Unit 2 Turbine Building.

<4. Status of the Treatment Facility and the Storage Facility> (As of February 22 at 7:00 am)

Facility	Cesium adsorption apparatus	Secondary Cesium adsorption apparatus (sarry)	Decontamination instruments	water desalinations (reverse osmosis membrane)	water desalinations (evaporative concentration)
Operating status	Under operation	Under operation*	Out of service	Operating intermittently according to the water balance	Operating intermittently according to the water balance

^{*}Cleaning of filter is implemented accordingly.

<5. Others>

- October 7, 2011 ~: Continuously implementing water spray using water after purifying accumulated water of Unit 5 and Unit 6 to prevent spontaneous fire of trimmed trees and diffusion of dust.
- February 20, 2012: At around 3:43pm, we observed that an error message was displayed in the screen of the noble gas monitoring system B of the gas management system of the primary containment vessel of Unit 2. Accordingly, the density of the noble gas in the system B was no longer observable at the Central Monitoring Station in the Main Anti-Earthquake Building. Observation was continued using the system A, one of the two systems A and B, which did not display any error message.
- February 21, 2012: at around 5:20pm, the same error message was displayed in the screen of system A. As a result, the density of the noble gas was no longer observable at Central Monitoring Station in the Main Anti-Earthquake Building. After investigating the situation at the site, we detected a failure of the transmission system which connects the site and the Central Monitoring Station in the Main Anti-Earthquake Building. However, there is no difficulty in confirming the subcriticality, as both the system A and B can be observed from the monitor at the site and, at the moment, the monitor screen can be remotely watched from the Central Monitoring Station in the Main Anti-Earthquake Building. The cause of the failure is now being investigated for restoration. The gas management system of the primary containment vessel of Unit 2 itself is in normal operation.
- February 22, 2012 : 10:05 As the component cooling sea water system pump (C) of Unit 6 had been restored, we started test operation.

[•] June 8, 2011 ~ Large tanks to store contaminated and decontaminated water are transported and installed.

10:07 Accordingly, the component cooling sea water system pump (A) stopped its operation.

End