ALPS Treated Water Discharge Status Update

April 24, 2025

Tokyo Electric Power Company Holdings, Inc.

- 1. History of the discharge of ALPS treated water (Management number* : 24-7-11)
- 2. Performance of the discharge of ALPS treated water (Management number* : 25-1-12)
- 3. Status of the dismantling of the J9 area tanks
- 4. Transfer of ALPS treated water in preparation for the future discharges

(Reference) Sea area monitoring history after the commencement of discharge

^{*} The management number is made up of the fiscal year, followed by the discharge number for that fiscal year, and the total number of discharges to date. For example, "24-7-11" indicates that the data is for the seventh discharge of 2024, which is the eleventh discharge to date.

1. Overview

- We are planning to conduct the discharge of ALPS treated water (management number: 24-7-11 and 25-1-12) as follows.
- In this report, we will explain that there was no abnormality in parameters and sea area monitoring from commenced to April 21, 2025.

FY2024

Management number	Tank group	Tritium Concentration	Commenced	Completed	Amount of discharge	Amount of tritium radioactivity
24-1-5	Group C	19 x 10 ⁴ Bq/liter	Apr 19, 2024	May 7, 2024	7,851m ³	Approx. 1.5 trillion Bq
24-2-6	Group A	17 x 10 ⁴ Bq/liter	May 17, 2024	Jun 4, 2024	7,892m ³	Approx. 1.3 trillion Bq
24-3-7	Group B	17 x 10 ⁴ Bq/liter	Jun 28, 2024	Jul 16, 2024	7,846m ³	Approx. 1.3 trillion Bq
24-4-8	Group C	20 x 10 ⁴ Bq/liter	Aug 7, 2024	Aug 25, 2024	7,897m ³	Approx. 1.6 trillion Bq
24-5-9	Group A	28 x 10 ⁴ Bq/liter	Sep 26, 2024	Oct 14, 2024	7,817m ³	Approx. 2.2 trillion Bq
24-6-10	Group B	31x 10 ⁴ Bq/liter	Oct 17, 2024	Nov 4, 2024	7,837m ³	Approx. 2.4 trillion Bq
24-7-11	Group C	31x 10 ⁴ Bq/liter	Mar 12, 2025	Mar 30, 2025	7,859m ³	Approx. 2.4 trillion Bq

FY2025

Management number	Tank group	Tritium Concentration	Commenced	Completed	Amount of discharge	Amount of tritium radioactivity
25-1-12	Group A	37x 10 ⁴ Bq/liter	Apr 10, 2025	Apr 28, 2025	7,800m ³	Approx. 2.9 trillion Bq

1. History of the discharge of ALPS treated water (Management number* : 24-7-11)

2. Performance of the discharge of ALPS treated water (Management number* : 25-1-12)

3. Status of the dismantling of the J9 area tanks

4. Transfer of ALPS treated water in preparation for the future discharges

(Reference) Sea area monitoring history after the commencement of discharge

* The management number is made up of the fiscal year, followed by the discharge number for that fiscal year, and the total number of discharges to date. For example, "24-7-11" indicates that the data is for the seventh discharge of 2024, which is the eleventh discharge to date.

1-1. Operating parameter records during the discharge (1/3) **TEPCO**

We were able to operate ALPS treated water transfer systems and seawater systems without issue.

*1: The flowmeters are reduplicate, so the higher of the figures from both meters was used.

*2: Total for systems A and B

1-1. Operating parameter records during the discharge (2/3)

No abnormalities were seen in the figures from the ALPS treated water transfer pump outlet radiation monitor.

※ : As shown in the schematic on the upper right, ALPS treated water was passed through System A. (System B was filled with filtrated water)

Overview of ALPS treated water dilution/discharge facility

1-1. Operating parameter records during the discharge (3/3)

Temporary increase in values, possibly due to rain was observed, but no abnormalities were seen in the readings.

1-2. Tritium concentrations after dilution during the discharge TEPCO

During the discharge period, water was sampled daily from the seawater pipe to analyze tritium concentrations.

 \Rightarrow Confirmed to be less than the upper limit for the operation: 1,500Bq/liter

	3/12	3/13~3/29	3/30
Calculated value: Time of data acquisition	16:00	7:00	-
Analysis value: Time of specimen sampling	16:11	6:00~9:00	11:42

The dilution rate had always been kept at over 100 times during the discharge.

[Reference] Total radioactivity of nuclides to be measured and assessed (30 nuclides)

The following chart shows the total radioactivity (Bq) for nuclides to be measured and assessed (30 nuclides) during the discharge of Management number: 24-7-11. (Calculated from analysis values^{×1} (Bq/liter) and discharge volume (7,859m³) for each nuclide)

X1: It was confirmed that the sum of the ratios of legally required concentrations of the nuclides targeted for measurement/assessment is 0.076 and less than 1.

The total radioactivity from nuclides for which analysis values were below detection limit (ND) have not been included.

Nuclide	Analysis value [Bq/liter]	Total radioactivity [Bq]	Nuclide	Analysis value [Bq/liter]	Total radioactivity [Bq]	Nuclide	Analysis value [Bq/liter]	Total radioactivity [Bq]
C-14	8.5E+00	6.7E+07	Cd-113m	<8.5E-02	_	Eu-155	<2.0E-01	_
Mn-54	<2.4E-02	-	Sb-125	1.2E-01	9.4E+05	U-234 ^{%3}	<2.6E-02	-
Fe-55	<1.7E+01	-	Te-125m ^{%2}	4.6E-02	3.6E+05	U-238 ^{%3}	<2.6E-02	-
Co-60	2.2E-01	1.7E+06	I-129	1.3E-01	1.0E+06	Np-237 ^{**3}	<2.6E-02	-
Ni-63	<9.2E+00	-	Cs-134	<2.9E-02	_	Pu-238 ^{%3}	<2.6E-02	-
Se-79	<1.0E+00	-	Cs-137	1.4E-01	1.1E+06	Pu-239 ^{%3}	<2.6E-02	-
Sr-90	6.2E-01	4.9E+06	Ce-144	<3.4E-01	_	Pu-240 ^{%3}	<2.6E-02	-
Y-90 ^{%2}	6.2E-01	4.9E+06	Pm-147 ^{%2}	<3.4E-01	-	P∪-241 ^{%2}	<7.0E-01	-
Tc-99	1.4E-01	1.1E+06	Sm-151 ^{%2}	<1.3E-02	_	Am-241 ^{%3}	<2.6E-02	_
Ru-106	<2.2E-01	-	Eu-154	<7.6E-02	-	Cm-244 ^{%3}	<2.6E-02	-

2 Analysis values were assessed with radioactive equilibrium3 Gross Alpha measurements

ΤΞΡϹΟ

TEPCO

1. History of the discharge of ALPS treated water (Management number* : 24-7-11)

2. Performance of the discharge of ALPS treated water (Management number* : 25-1-12)

3. Status of the dismantling of the J9 area tanks

4. Transfer of ALPS treated water in preparation for the future discharges

(Reference) Sea area monitoring history after the commencement of discharge

* The management number is made up of the fiscal year, followed by the discharge number for that fiscal year, and the total number of discharges to date. For example, "24-7-11" indicates that the data is for the seventh discharge of 2024, which is the eleventh discharge to date.

2-1. Outline of the Twelfth discharge of ALPS treated water into the sea (Management number: 25-1-12)

	Outline of discharge for group K4-A											
Attrib	Concentration of the 30 types of radionuclides (excluding tritium) in scope of measurement/evaluation	Within regulatory requirements (sum of the ratios of concentrations of radioactive substances is less that (sum of the ratios of concentration: 0.083)	Within regulatory requirements (sum of the ratios of legally required concentrations of radioactive substances is less than 1) (sum of the ratios of concentration: 0.083) (details on p1 of the link)									
utes c	Tritium concentration	37 x 10 ⁴ Bq/liter	(details on p2 of the link)									
of the trea	Concentration of the 38 significant types of radionuclides measured voluntarily	No significant radionuclides identified	(details on p3 of the link)									
ated w	Status of water quality assessment	Within government and prefectural requirements	(details on p4 of the link)									
vater	Water temperature	Same as outdoor temperature. After diluted to 740 times (design dilution factor), same as sea water temperature (not the same as plant's thermal discharge)										
Expected	volume of treated water discharge	Approximately 7,800m ³										
Treated w	vater flow rate	Approximately 460m ³ /day (set not to exceed designed maximum on 500m ³ /day)										
Dilution se	ea water flow rate	Approximately 340,000m ³ /day (same speed as walking in the tunnel [approximate	d 1m/second])									
Assumed	amount of tritium radioactivity	Approximately 2.9 trillion Bq										
Concentra	ation of tritium after dilution	Approximately 500 Bq/liter										
Term of d	ischarge	April 10, 2025 – April 28, 2025										

2-2. Analysis Results of ALPS Treated Water in the Measurement/Confirmation Tanks (Management number: 25-1-12)

Pre-discharge analysis results for the samples taken from the measurement/confirmation tank (Group A) on February 21, 2025, were obtained. <u>It was confirmed that the water satisfies</u> <u>discharge requirements</u> (Table 1. Disclosed on April 8, 2025).

- Item 1: For 30 nuclides to be measured and assessed, <u>the sum of the ratios of the concentration of each radionuclide</u> <u>to the regulatory concentration is 0.083</u>, and it is confirmed to be less than 1.
- Item 2: Analysis results of tritium concentration is <u>37 x 10⁴ Bq/liter</u>, and it is confirmed to be less than 1 million Bq/liter.
- Item 1/2: The external agency consigned by TEPCO (Kaken) and the third-party consigned by the Japanese Government (JAEA)^{*1} obtained the same results from their analyses.
- Item 3/4: It was confirmed that operational targets have been satisfied.

*1 ALPS treated water third-party analysis (<u>https://fukushima.jaea.go.jp/okuma/alps/index_e.html</u>)

TEPCO

	Items	Requirement basis	Operational Target	Analysis Results
1	Nuclide to be measured and assessed (30 nuclides)	Implementation	The sum of the ratios of the concentration of each radionuclide to the regulatory concentration, except for tritium, is less than 1	0.083 (< 1)
2	Tritium	pian	Tritium concentration is less than 1 million Bq/liter	37 x 10 ⁴ Bq/liter (less than 1 million Bq/liter)
3	Nuclides voluntarily checked to ensure that they are not significantly present (38 nuclides)	Voluntary	No significant concentrations were found of any of the nuclides	None of the nuclides are present in significant consternation
4	General water quality: 44 criteria		Pre-check of water quality standards ^{*2}	All criteria satisfied

Table 1. Pre-discharge analysis results of water in the measurement/confirmation tank (Management number: 25-1-12)

*2 Water sampled from the discharge vertical shaft (upper-stream storage) once a year to confirm that legal requirements are being satisfied

For 30 nuclides to be measured and assessed, the sum of the ratios of the concentration of each radionuclide

to the regulatory concentration is 0.083, and it is confirmed to be less than 1.

			Pre-discharge Analysis Results of ALPS Treated Water in the Measurement/Confirmation Tanks (1/4)											
		Sam	ple Name	ALPS Treated W	ater in the Meas	surement/Confirm	nation Tanks	Group A]		Nuclides	to be measured and asse	ssed (29 nuclides) :	
		Date and	Time of Sampling	February 21, 2025	10:29				-	Summary	The sur	m of the ratios of the con	centration of each	0.083
		Storage	Volume (m ²)	8962							radi	onuclide to the regulatory	concentration	(Confirmed to be less than 1)
Nu allala a ta la a		-				1 (22								
Nuclides to be		Radioa	ctivity Ana	lysis: Nuclides to b	e measured and	assessed (30 nu	clides)							
managered and accorded					TERCO	Analysis	Results	KAKEN Co. 164		Ratios to Re	quiator	Concentration Limit	Regulatory	
measured and assessed		No.	Nuclide	Analysis Value	Uncertainty *1	Detection Limit	Analysis Value	Uncertainty *1	Detection Limit	TEPO	0	KAKEN Co., Ltd.	*2	Analysis Method *4
(20 puelides)	\square			(Ba/L)	(Ba/L)	(Ba/L)	(Ba/L)	(Ba/L)	(Ba/L)		Ŭ.		(Bq/L)	
(SU huchdes)		1	C-14	1.2E+01	± 2.0E+00	1.9E+00	1.2E+01	± 1.5E+00	9.6E-01	(5.1E-03	6.1E-03	2000	Measurement
		2	Mn-54	ND	_	2.3E-02	ND	_	1.7E-02	less than	2.3E-05	less than 1.7E-05	1000	Measurement
		3	Fe-55	ND	—	1.8E+01	ND	_	1.1E+01	less than 8	3.8E-03	less than 5.5E-03	2000	Measurement
		4	Co-60	2.3E-01	± 4.6E-02	2.5E-02	2.4E-01	± 3.5E-02	1.8E-02	1	1.2E-03	1.2E-03	200	Measurement
		5	Ni-63	ND	_	9.3E+00	ND	_	6.0E+00	less than 1	1.6E-03	less than 1.0E-03	6000	Measurement
		6	Se-79	ND	_	9.9E-01	ND	_	1.8E+00	less than 5	5.0E-03	less than 9.1E-03	200	Measurement
Analysis results of		7	Sr-90	7.1E-01	± 7.2E-02	3.1E-02	6.5E-01	± 8.4E-02	2.8E-02		2.4E-02	2.2E-02	30	Measurement
		8	V.00	7.1E-01	-	3.1E-02	6.5E-01	-	2.8E-02		2.4E-03	2.2E-03	300	Sr-90/Y-90 Radioactive Equilibrium Assessment
radioactivity (Bg/liter)		9	IC-99 Bu-106	1.9E-01	± 2.8E-02	1.0E-01	1.6E-01	± 3.3E-02	6.3E-02	loss than	1.9E-04	1.6E-04	1000	Measurement
	1 1	10	Cd-112m	ND		2.10-01	ND		1.02-01	less than 2	2.10-03	less than 1.0E=03	100	Measurement
		12	Sh-125	1.0E-01	+ 5.9E-02	8.5E-02	1.2E=01	+ 5.45.00	7.6E-02	less triair 2	1.3E-04	1.5E-04	800	Measurement
	11	13	Te-125m	3.8E-02	-	3.1E-02	4.5E-02		2.8E-02		1.2E-05	5.0E-05	900	Sb-125/Te-125m Radioactive Equilibrium Assessment
		14	I-129	1.0E-01	± 9.2E-03	2.6E-02	1.3E-01	± 3.4E-02	4.6E-02	1	1.2E-02	1.5E-02	9	Measurement
		15	Cs-134	ND	_	2.VE-02	ND	_	2.0E-02	less than 4	4.9E-04	less than 3.4E-04	60	Measurement
		16	Cs-137	4.0E-01	· · · 45=02	2.7E-02	3.8E-01	± 5.1E-02	2.2E-02	4	4.5E-03	4.2E-03	90	Measurement
		17	Ce-144	NP	—	3.1E-01	ND	_	4.7E-01	less than t	1.5E-03	less than 2.4E-03	200	Measurement
Ratios to Regulatory		18	Pm-1.15	ND	_	3.0E-01	ND	_	2.5E-01	less than 1	1.0E-04	less than 8.2E-05	3000	Eu-154 Relative Ratio Assessment
nation to negative y	+	13	Sm-151	ND	_	1.2E-02	ND	_	9.4E-03	less than 1	1.5E-06	less than 1.2E-06	8000	Eu-154 Relative Ratio Assessment
Concentration Limit		20	Eu-154	ND	_	6.8E-02	ND	_	5.5E-02	less than 1	1.7E-04	less than 1.4E-04	400	Measurement
	1 1	21	Eu-155	ND	_	1.7E-01	ND	_	1.5E-01	less than 5	5.5E-05	less than 5.0E-05	3000	Groce Alpha
	1 1	22	0-234										20	Gross Alpha
		23	U=238 Np=237										20	Gross Alpha
		25	Pu-238										4	Gross Alpha
	11	26	Pu-239	ND	_	2.9E-02	ND	_	2.4E-02	less than	7.2E-03	less than 6.0E-03	4	Gross Alpha
	11	27	Pu-240							*3		*3	4	Gross Alpha
	11	28	Am-241										5	Gross Alpha
		29	Cm-244										7	Gross Alpha
		30	Pu-241	ND	_	7.9E-01	ND	_	6.6E-01	less than 4	4.0E-03	less than 3.3E-03	200	Pu-238 Relative Ratio Assessment
	[The sun	n of the ratios	of the concentration of	each radionuclide to	o the regulatory conc	entration (sum of th	e ratios to regulatory	concentration limit)	less than 8	3.3E-02	less than 8.2E-02	l	
		ND in	dicates that a	analysis result is less the	han the detection li	mit.								
		- value	s are express	EL 01" moone "2.1 v10	iuon.	Cimilarly #2 1E : 004	moone #2 1v100#	and onuals 2.1 and	172 1E 017 moons f	2 to 10 ⁻¹⁰ and	oquale 0 :			
		ror exemple, J.LE+01 means J.LAU and equals JL Similarly, "J.LE+00" means "J.LAU" and equals J.1, and "J.LE-01" means "J.LAU" and equals U.SI.												
		"Uncertainty" is calculated using "Expanded Uncertainty: Coverage Factor k=2".												
		*2 Regulatory concentration limits stipulated in the Regulations of the Safety and Physical Protection of Specific Nuclear Fuel Material at Fukushima Dailchi Nuclear Power Station of the Tokyo Electric Power Company, Incorporated.												
	1	(Att	ached Chart	1, Row 6: Concentratio	on limits in the wat	er outside of the en	vironmental monit	oring area (in this cl	hart Bq/cm ³ has been	en converted in	to Bq/L])			
		*3 The	ratio to regu	latory concentration lin	mit for alpha-radior	nuclides has been as	sessed using the lo	owest regulatory co	ncentration limit for	all the target n	uclides.			
	1	*4 Anal	ysis methods	are as follows:				-						
	1	Mea	surement - T	he concentrations of e	ach radionuclide ha	ave been calculated	by directly measur	ing/analyzing radio	activity intensity and	d the quantity o	of the eler	nent.		
		Gros	Gross Alpha - The total amount of alpha-radionuclides in the specimen are calculated by directly measuring alpha rays.											
		Radi	ioactive Equil	Ibrium Assessment - C sessment - Calculated	aculated using a p based on the asses	invisical phenomeno sisment values of rad	n in which the amo	ount of radioactivity sted inside the read	or one radionuclide tor while considering	and another ra	dionuclide	migration into ALPS treat	of that radionuclide ex ted water.	sist in a certain ratio.

Analysis results of **tritium concentration is 37 x 10⁴ Bq/liter**.

Trit	ium Cor	ncentration (I	Bq/liter)									
		Pre-	-discharge Analys	is Results of ALP	S Treated Water	r in the Measuren	nent/Confirmatic	on Tanks (2/4)				
							Summary	37 x 10 ⁴ Bq/L	(confirmed to be less than 1 million Bq/L)			
Radio	activity An:	alveis: Titium										
	Radioactivity Analysis: Tilitium Analysis Results											
No	Nuclide	· · · · · · · · · · · · · · · · · · ·	TEPCO	TEPCO K/				Analysis Objective	Applysis Method *3			
NO.		Analysis Value (Bq/L)	Uncertainty *1 (Bq/L)	Detection Limit (Bq/L)	Analysis Value (Bq/L)	Uncertainty *1 (Bq/L)	Detection Limit (Bq/L)	Analysis Objective	Analysis Method 15			
1	H-3	3.7E+05	± 2.1E+04	2.1E+01	3.5E+05	± 2.5E+04	2.1E+01	*2	Measurement			
Value For e *1 "Un *2 To c *3 Ana Mei	es are expres ixample, "3.1 certainty" re icertainty" is onfirm that the ilysis method asurement -	sed in exponential no IE+01" means "3.1×: fers to the accuracy of calculated using "Exp tritium concentration is k i is as follows: The concentration of	Itation. 10 ¹ " and equals 31. Sir of analysis data. Danded Uncertainty: Co ess than 1E+06Bq/liter (les radionuclide has been	milarly, "3.1E+00" mea werage Factor k=2". s than 1 million Bq/liter), th calculated by directly n	ins "3.1x10 ⁰ " and equive maximum concentration neasuring/analyzing r	uals 3.1, and "3.1E-01" n stipulated in the implement adioactivity intensity ar	' means "3.1x10 ⁻¹ " an ntation plan, ensuring that nd the quantity of the	t the tritium concentration	after dilution is less than 1,500 Bq/liter.			

<Excerpt from Treated Water Portal Site>

We voluntarily checked that the nuclides (38 nuclides) are not significantly present. We confirmed that all the 38 nuclides are not significantly present.

							*1 "0" indicates that the absence of significant concentrations was confirmed by the following, and "x" indicates that significant concentrations of nuclide was confirmed. • Concentration of nuclide measured was below detection limit.
	Dro. dicch	area Apalveic	Reculte of ALDE T	reated Water is	a the Measureme	at/Confirmation Tanks (2/4)	 - Contraction of masses of the second masses of the second
	Pre-uisch	large Analysis	Results of ALFS 1	reated water i	T the measurement	ic/Commutation ranks (5/4)	extremely small compared to the regulatory concentration limit, or in other words, if it is less than 1/100 of the regulatory concentration limit
					Summary	No significant concentrations found of any of the nuclides	which is the value set as the detection limit, then is shall be deemed to be below the detection limit. Assessment Values (Bq/L) Régulatory
							Nuclide TEPCO KAKEN Co.,Ltd. Concentration Limit
Dadio	etivity Analysi	er Nuclidae volu	ntarily checked to a	neuro that they a	re not cignificantly	aracant (29 nuclidae)	Rh-103m 2.0E+05
Kaulo	CHAILS BURNES	3. Nuclides Vold	FPCO		N Co. Ltd	resenc (so nuclues)	Km10b — — JJUE405 Sn119m — — 2.0E403
No	Nuclide		Detection Limit	NAKE	Detection Limit	Confirmation Method *2	Te-127m — — <u>3.0E+02</u>
140.	Nucline	Assessment *1	Detection Limit	Assessment *1	Detection Limit	Commadon Nethod 2	Ba-137m 3.8E-01 3.6E-01 8.0E+05
	F . 50		(Bq/L)	0	(Bq/L)		Pr-144m — — 4.0E+04 Pr-144 — — 2.0E+04
1	Fe-59	0	4.5E-02	0	3.8E-02	4	Am-242m —
2	Co-58	0	2.4E-02	0	1.7E-02	4	 A hypen "- indicates that the concentration of the target nuclide was below the detection limit. Values are expressed in exponential notation.
3	Zn-65	0	4.6E-02	0	3.8E-02	4	For example, "3.1E+01" means "3.1×10 ^{1*} and equals 31. Similarly, "3.1E+00" means "3.1×10 ⁶ " and equals 3.1, and "3.1E-01" means "3.1×10 ^{-1*} and equals 0.31.
4	Rb-86	0	3.7E-01	0	2.7E-01	4	*2 Analysis Methods are as follows:
5	Sr-89	0	5.5E-02	0	4.5E-02	4	Measurement - The concentrations of each rationucide have been calculated by directly measuring/analyzing radioactivity intensity and the quantity of the element. Measurement (substituted with times alpha) - The total amount of alphas-radionucides in the specimena are calculated by directly measuring alpha rays.
6	Y-91	0	2.7E+00	0	2.0E+00	1	Radoactive Equilibrium Assessment - Calculated using a physical phenomenon in which the annual of radoactivity of non radonuclide and another radonuclide produced by the decay of but radonuclide in a cartain natio.
7	Nb-95	~	3.1E-02	0	2.1E-02		Relative Ratio Assessment - Calculated based on the assessment values of radionuclides that existed inside the reactor while considering radionuclide decay and migration into ALPS treated water.
8	Ru-103	0	3.0E-02	0	3.8E-02	1	*3 Regulatory concentration limits stipulated in the Regulations of the Safety and Physical Protection of Specific Nuclear Fuel Material
9	Ag-110m	0	2.5E-02	0	1.8E-02		at Fukushma Dalichi Nuclear Power Station of the Tokyo Electric Power Company, Incorporated.
10	Cd-115m	0	1.5. 00	0	1.2E+00	T I	(Acadieu Charci, Row 6. Concentration limits in the water outside of the environmental monitoring area (in this charcistychin has been converted into byc.))
11	Sn-123	0	1.3E+0u	0	9.8E-01	1	
12	Sn-126	Ŏ	1.3E-01	0	1.1E-01	1	
13	Sb-124	Ö	5.6E-02		4.7E-02	Management	< Excernt from Treated Water Portal Site >
14	Te-123m	ŏ	4.7E-02	0	4.4E-02	Measurement	
15	Te-127	ŏ	8.8E-01	ŏ	6.4E-01	† 1	
16	Te-129m	ŏ	7.8E-01	ŏ	7 . 01	†	
17	Te-129	ŏ	3 7E-01	ŏ	3.6E-01	†	
18	Ce-136	ŏ	3.1E-02	Ň	2.4E-02		
10	Ba-140	ŏ	1.4E-01	ŏ	1.2E-01		
20	Ce-141	- ŏ	1.46-01	8	7.8E-02		
20	Dm 146	- ×	1.12-01	Ň	2.4E-02		
21	Pm=140	× ×	2.55.02	0	3.46-02		
22	Pm-148m	<u> </u>	2.5E-02	0	2.3E-02		
23	Pm-148		2.0E-01	0	1.8E-01		
24	EU-152		1.2E-01	0	1.0E-01	+	Nuclides voluntarily checked to ensure that
25	Gd-153	0	1.5E-01	0	1.2E-01	4	
26	ID-160	0	7.9E-02	0	0.1=-02		they are not significantly present (38 nuclides)
27	Am-243	0	2.9E-02	0	2.4E-02		
28	Cm-242	0	2.9E-02	0	2.4E-02	(substituted with gross alpha)	
29	Cm-243	0	2.9E-02	0	2.4E-02		
30	Rh-103m	0	3.0E-02	0	3.8E-02	Ru-103/Rh-103m Seattive Equilibrium Assessment	
31	Rh-106	0	2.1E-01	0	1.8E-01	Ru-106/Rh-106 Radioactive Conflibrium Assessment	
32	Sn-119m	0	4.9E-03	0	4.1E-03	Sn-126 Relative Ratio Assement	
33	Te-127m	0	9.0E-01	0	6.5E-01	Te-127 Relative Ratio Assessment	Assessment results
34	Cs-135	0	1.8E-07	0	1.4E-07	Cs-137 Relative Ratio Assessment	
35	Ba-137m	0	2.6E-02	0	2.1E-02	Cs-137/Ba-137m Radioactive Equilibrium Assessment	() : absence of significant concentration was confirmed
36	Pr-144m	0	4.7E-03	0	7.2E-03	Ce-144/Pr-144m Radioactive Equilibrium Assessment	
37	Pr-144	0	3.1E-01	0	4.7E-01	Ce-144/Pr-144 Radioactive Equilibrium Assessment	X ' significant concentration was confirmed
38	Am-242m	0	2.0E-04	0	1.6E-04	Am-241 Relative Ratio Assessment	A 1 Significant concentration was commed
			2.02.0.				

For 44 general water quality measurement items (voluntary check to confirm that there are no unusual water quality), it is confirmed that all criteria^{%1} satisfied.

※1: In accordance with Fukushima Prefecture's "Ordinance on Discharge Standards Based on the Air Pollution Control Act and Wastewater Standard based on the Water Pollution Prevention Act (attached Chart 2)", and "the Ordinance Enforcement Regulations Pertaining to the Preservation of the Living Environment in Fukushima (attached Chart 5)".

	General water qua	lity meas	urement i	tems (44 criteria)	Analy	sis results							
					11 🗖	1.2 Displays others	- ma/l	004	0.01 or loss				
	e-discharge Analysis Results of ALPS Treated Viver in the Measurement/Confirmation (and)												
Pre-	re-discharge Analysis Results of ALPS Treated water in the Measurement/Confirmation Tanks (4/4) 27 Cis-1,2-Dichloroethylene mg/L <0.04 0.4 or less												
			Summary	3 1,1,1-Trichloroethane	mg/L	<0.3	3 or less						
			ounnury	enter badonea	2	1,1,2-Trichloroethane	mg/L	< 0.006	0.06 or less				
Gene	ral Water Quality Analysis: Voluntary	check to confir	m that there are	no unusual water quality (44 criteria)	3	1,3-Dichloropropene	mg/L	<0.002	0.02 or less				
No.	Measurement Items	Unit	Analysis Result	Criteria *1	3	Thiuram	mg/L	<0.006	0.06 or less				
1	Hydrogen Ions (pH)	_	8.6	Sea Area 5.0~9.0	3	2 Simazine	mg/L	<0.003	0.03 or less				
2	Suspended Solids (SS)	ma/L	1	Maximum: 70 or less Average: 50 or less	3	Thiobencarb	mg/L	<0.02	0.2 or less				
3	Chemical Oxygen Demand (COD)	mg/L	1.8	Maximum: 40 or less Average: 30 or less	3	Benzene	mg/L	<0.01	0.1 or less				
4	Boron	ma/l	0.5	Sea Area 230 or less	3	Selenium	mg/L	<0.01	0.1 or less				
5	Soluble Iron	mg/L	<1	10 or less		37 Phenols		<0.003	0.03 or less				
6	Copper	mg/L	<0.1	2 or less	3	Fluorine	mg/L	<0.1	Sea Area 10 or less				
7	Nickel	mg/L	<0.1	2 or less		Soluble Mangapese	mg/L	<1	10 or less				
8	Chrome	mg/L	<0.1	2 or less	4	Ammonia, Ammonium Compounds	mg/L	<1	10 01 1033				
9	Zinc	mg/L	<0.1	2 or less	4	Nitrite Compounds and Nitrate Compounds	mg/L	7	100 or less				
10	Biochemical Oxygen Demand (BOD)	mg/L	3	Maximum: 40 or less Average: 30 or less	4	42 1,4-Dioxane		< 0.05	0.5 or less				
11	Coliform Count	nce/cm ³	0	3000 or less	4	n-Hexane Extractables (Mineral Oils)	mg/L	<0.5	1 or less				
12	Cadmium	ma/l	<0.01	0.03 or less	4	n-Hexane Extractables (Animal and Vegetable Oils and Fats)	mg/L	<1	10 or less				
13	Cvanide	mg/L	<0.05	0.5 or less	· · ·	"less than" symbol (<) indicates that	the quantity is	below guantitation	n limit.				
14	Organic Phosphorus	mg/L	<0.1	1 or less	*1	n accordance with Fukushima Prefecture's "Ordinanc	e on Discharge Stan	dards Based on the Air Po	ollution Control Act and Wastewater Standards				
15	Lead	mg/L	<0.01	0.1 or less		ased on the Water Pollution Prevention Act (attached	d Chart 2) [大気汚染]	方止法に基づく排出基準及び水	:質汚濁防止法に基づく排水基準を定める条例(別表第2)]",				
16	Hexavalent Chromium	mg/L	<0.05	0.2 or less	11	and "the Ordinance Enforcement Regulations Pertainia 夏境の保全等に関する条例旅行規則(別表第5)]".	ng to the Preservatio	n of the Living Environme	ent in Fukushima (attached Chart 5) [福島県生活				
17	Arsenic	mg/L	<0.03	0.1 or less	*2	Not Detected" indicates that, as described in "Ministe	erial Ordinance on Eff	fluent standards (attached	d Table 1) [排水基準を定める省令 (別表第一)]",				
18	Mercury	mg/l	< 0.0005	0.005 or less	11	when the state of water pollution is assessed in disch be result is below the limit of quantification (Alkyl Me	arged water using the arcury: 0.0005 mg/li	ter) of the assessment m	y the Minister of the Environment, ethod.				
19	Alkyl Mercury	mg/L	< 0.0005	Not Detected *2	┤┃└──								
20	Polychlorinated Biphenyl	mg/L	< 0.0005	0.003 or less	11		~	Excernt from	Treated Water Portal Site				
21	Trichlorethylene	ma/L	< 0.03	0.1 or less	11				Treated Water Forta Sile/				
22	Tetrachloroethylene	ma/L	< 0.01	0.1 or less	11								
23	Dichloromethane	ma/L	<0.02	0.2 or less	11								
24	Carbon Tetrachloride	mg/L	< 0.002	0.02 or less	11								
<u> </u>					1								

2-3. Operating parameter records during the discharge (1/3) **TEPCO**

• We are able to operate ALPS treated water transfer systems and seawater systems without issue.

- *1: The flowmeters are reduplicate, so the higher of the figures from both meters was used.
- *2: Total for systems A and B

2-3. Operating parameter records during the discharge (2/3)

No abnormalities are seen in the figures from the ALPS treated water transfer pump outlet radiation monitor.

※ : As shown in the schematic on the upper right, ALPS treated water was passed through System B. (System A was filled with filtrated water)

2-3. Operating parameter records during the discharge (3/3) TEPCO

Temporary increase in values, possibly due to rain was observed, but no abnormalities were seen in the readings.

2-4. Tritium concentrations after dilution during the discharge TEPCO

During the discharge period, water was sampled daily from the seawater pipe to analyze tritium concentrations.

 \Rightarrow Confirmed to be less than the upper limit for the operation: 1,500Bq/liter

	4/10	4/11~4/20
Calculated value: Time of data acquisition	14:00	7:00
Analysis value: Time of specimen sampling	14:04	7:00~11:00

The dilution rate had always been kept at over 100 times during the discharge.

2-5. Sea area monitoring history (1/3)

O Measurement results of tritium concentrations in water sampled in the vicinity of the discharge outlet (within 3km of the power station) and outside of the vicinity of the discharge outlet (within a 10km square in front of the power station) are all below indices (discharge suspension level and investigation level).

(Unit: Bq/liter)

	Sampling location ^{*3}	Frequency	March 2025									
			23	24	25	26	27	28	29	30 ^{*4}	31	1
	T-1	Twice a week ^{*1}	—	<6.8	_	—	<8.1	—	I		<7.3	—
	T-2	Twice a week ^{*1}	—	<6.9	_	—	<5.3	—		-	<7.2	—
	T-0-1	Once a day ^{*2}	<6.3	<6.3	<7.3	<6.7	<8.1	<6.6	<6.9	<7.8	<8.0	<8.0
	T-0-1A	Once a day ^{*2}	<6.4	<6.3	38	<6.6	<5.3	<7.2	<4.9	<8.6	<8.0	<8.0
In the vicinity of the	T-0-2	Once a day ^{*2}	30	<6.3	<7.3	<6.7	14	<6.6	<6.9	<7.7	<8.0	<8.0
discharge outlet	T-0-3A	Twice a week ^{*1}	—	<5.3	—	—	<5.3	—	-	-	<6.2	—
	T-0-3	Twice a week ^{*1}	-	<6.3	_	_	<5.3	-	-	-	<8.0	-
	T-A1	Twice a week ^{*1}	-	<5.3	-	—	<8.0	-	-	_	<6.2	-
	T-A2	Once a day ^{*2}	<6.4	<5.3	<7.3	<6.6	<7.8	<7.1	<4.8	<8.6	<6.2	<7.9
	T-A3	Twice a week ^{*1}	—	<5.3	—	—	<7.8	—	—	—	<6.1	—
	T-D5	Once a week	—	<6.8	—	—	—	—	-	-	<7.2	—
Outside the vicinity of the	T-S3	Once a month	—	—	_	—	—	—		-	—	—
discharge outlet	T-S4	Once a month	_	—	_	—	—	_	—	_	—	—
	T-S8	Once a month	_	_	_	_	_	_	_	_	_	_

: A "less than" symbol (<) indicates that the analysis result was less than the detection limit

indicates that the detected value

: Term of discharge of ALPS treated water (Management number: 24-7-11)

*1: Conduct twice a week during the discharge period and for once a week following the completion of discharge. Conduct once a week outside the discharge period, excluding one week following the completion of discharge

*2: Conduct once a week during the discharge period and once a week following the completion of discharge. Conduct once a month outside the discharge period, excluding one week following the completion of discharge

*3: For sampling locations, refer to "[Reference] Measurement monitoring plan"

*4: Sampled before the commencement of discharge at 8AM

(Unit: Bg/liter)

	Compling location *3	Frequency	April 2025												
	Sampling location 3	Frequency	2	3	4	5	6	7	10*5	11	12	13			
In the vicinity of the discharge outlet	T-1	Twice a week ^{*1}	_	<6.1	<5.6	_	—	<7.2	<8.7	-	_	-			
	T-2	Twice a week ^{*1}		<6.1	<5.6	_	—	<7.3	<8.7	—		—			
	T-0-1	Once a day ^{*2}	_*4	_*4	_*4	<6.8	<5.7	<7.2	<8.4	<7.5	<5.3	<7.2			
	T-0-1A	Once a day ^{*2}	_*4	_*4	_*4	<6.8	<5.7	<6.2	<8.7	<5.0	<6.0	27			
	T-0-2	Once a day ^{*2}	_*4	_*4	_*4	<6.8	<5.7	<7.2	<8.4	<7.5	12	<7.2			
	T-0-3A	Twice a week ^{*1}	_	_*4	_*4	<8.2	-	<6.2	<8.7	_	—	—			
	T-0-3	Twice a week ^{*1}	_	_*4	_*4	<6.8	_	<6.3	<8.4	_	_	_			
	T-A1	Twice a week ^{*1}	_	_*4	_*4	<8.2	_	<7.3	<6.4	_	_	—			
	T-A2	Once a day ^{*2}	_*4	_*4	_*4	<8.1	<5.7	<7.2	<6.5	<5.0	<6.0	12			
	T-A3	Twice a week ^{*1}	_	_*4	_*4	<8.1	_	<7.2	<6.4	_	_	—			
Outside the vicinity of the discharge outlet	T-D5	Once a week	_	_	_	_	_	<7.3	_	_	_	_			
	T-S3	Once a month	_	_	_	_	_	_	_	_	_	_			
	T-S4	Once a month	_	_	_	_	—	_	_	_	_	_			
	T-S8	Once a month	_	_	_	_	_	_	_	_	_	_			

X: A "less than" symbol (<) indicates that the analysis result was less than the detection limit

indicates that the detected value

: Term of discharge of ALPS treated water (Management number: 25-1-12)

*1: Conduct twice a week during the discharge period and for once a week following the completion of discharge. Conduct once a week outside the discharge period, excluding one week following the completion of discharge

*2: Conduct once a week during the discharge period and once a week following the completion of discharge. Conduct once a month outside the discharge period, excluding one week following the completion of discharge

*3: For sampling locations, refer to "[Reference] Measurement monitoring plan"

*4: Sampling suspended due to bad weather condition

*5: Sampled after the commencement of discharge at 2AM

(Unit:	Bq/	liter)
--------	-----	--------

			April 2025										
	Sampling location ^{*3}	Frequency	14	15	16	17	18	19					
	T-1	1 Twice a week ^{*1}		_	—	<7.1	_	_					
T-2		Twice a week ^{*1}	<8.5	-	_	<7.1		—					
	T-0-1	Once a day ^{*2}	_*4	_*4	<7.7	<7.1	<7.7	<5.7					
In the	T-0-1A	Once a day ^{*2}	_*4	_*4	<7.2	<8.0	<8.8	<5.9					
vicinity	T-0-2	Once a day ^{*2}	_*4	_*4	<7.7	<7.1	<7.7	<5.7					
of the discharge outlet	T-0-3A	Twice a week ^{*1}	_*4	_*4	<7.2	<8.0	-	-					
	T-0-3	Twice a week ^{*1}	_*4	_*4	<7.7	<8.0	—	_					
	T-A1	Twice a week ^{*1}	_*4	_*4	<6.8	<7.8	Ι	-					
	T-A2	Once a day ^{*2}	*4	_*4	<6.8	<7.8	20	6.3					
	T-A3	Twice a week ^{*1}	_*4	_*4	<6.8	<7.8	—	-					
Outside	T-D5	Once a week	-	_	<7.2	-	-	-					
the vicinity of the discharge outlet	T-S3	Once a month	_	—	—	<7.0	—	_					
	T-S4	Once a month	_	_	_	<7.0	—	_					
	T-S8 Once a month		_	_	_	<7.0	_	-					

X: A "less than" symbol (<) indicates that the analysis result was less than the detection limit

indicates that the detected value

: Term of discharge of ALPS treated water (Management number: 25-1-12)

*1: Conduct twice a week during the discharge period and for once a week following the completion of discharge. Conduct once a week outside the discharge period, excluding one week following the completion of discharge

*2: Conduct once a week during the discharge period and once a week following the completion of discharge. Conduct once a month outside the discharge period, excluding one week following the completion of discharge

*3: For sampling locations, refer to "[Reference] Measurement monitoring plan"

*4: Sampling suspended due to bad weather condition

[Reference] Comparison of tritium concentration in seawater TEPCO

Unit: Bq/liter										
60,000 Japan's Regulatory Standard (discharge outlet)*1	We have set a discharg level as TEPCO's operat	e suspension level a ional indices.	nd an investigation							
		Discharge suspension level	Investigation level							
10,000 WHO's Drinking Water Quality Guidelines	Within 3km of the power station	700 Bq/L	350 Bq/L							
	Within a 10km square in front of the power station	30 Bq/L	20 Bq/L							
Tipped Support Limit of Hitdelin Concentration Indicated in the Coventment Follow Tipped Suppension Level (10 Locations within 3 km of the power station) 350 Investigation Level (10 Locations within 3 km of the power station) 350 Investigation Level (10 Locations within 3 km of the power station) Object Limit of the power station Object Limit of the power station <th c<="" th=""><td> If the discharge suspension be immediately suspendent of the investigation level is be inspected and the frequencessary. Even if the tritium consuspension level and Imbelow the Japan's reguent of the VHO's drinking water of assess that the surround the</td><td colspan="8"> If the discharge suspension level is exceeded, the sea discharge will be immediately suspended. If the investigation level is exceeded, facilities/operation status will be inspected and the frequency of monitoring will be increased as necessary. Even if the tritium concentration exceeds indices (Discharge suspension level and Investigation level), the levels are we below the Japan's regulatory standard of 60,000 Bq/L and WHO's drinking water quality guidelines of 10,000 Bq/L, a assess that the surrounding sea areas are still safe </td></th>	<td> If the discharge suspension be immediately suspendent of the investigation level is be inspected and the frequencessary. Even if the tritium consuspension level and Imbelow the Japan's reguent of the VHO's drinking water of assess that the surround the</td> <td colspan="8"> If the discharge suspension level is exceeded, the sea discharge will be immediately suspended. If the investigation level is exceeded, facilities/operation status will be inspected and the frequency of monitoring will be increased as necessary. Even if the tritium concentration exceeds indices (Discharge suspension level and Investigation level), the levels are we below the Japan's regulatory standard of 60,000 Bq/L and WHO's drinking water quality guidelines of 10,000 Bq/L, a assess that the surrounding sea areas are still safe </td>	 If the discharge suspension be immediately suspendent of the investigation level is be inspected and the frequencessary. Even if the tritium consuspension level and Imbelow the Japan's reguent of the VHO's drinking water of assess that the surround the	 If the discharge suspension level is exceeded, the sea discharge will be immediately suspended. If the investigation level is exceeded, facilities/operation status will be inspected and the frequency of monitoring will be increased as necessary. Even if the tritium concentration exceeds indices (Discharge suspension level and Investigation level), the levels are we below the Japan's regulatory standard of 60,000 Bq/L and WHO's drinking water quality guidelines of 10,000 Bq/L, a assess that the surrounding sea areas are still safe 							
Approx. 10 Detection limit of quick measurement Approx. 0.1-0.4 Detection limit of regular measurement Approx. 0.1-0.4 Detection limit of regular measurement Approx. 0.1-0.4 Detection limit 0 ~ 0.043 Bq/liter Historical range for seawater across Japan ²	It is expected that the concentration of tritium in se be affected depending on the concentration of tritiue treated water to be released in the future, and highe values than before will be detected. Even in such cas									

investigation level and other indices.

*1: This standard has been stipulated based on the calculation that if a person were to drink approximately 2L of the water coming out of the discharge outlet of a nuclear facility every day for one year, his/her exposure would be 1mSv. *2: Source: Environmental Radioactivity and Radiation in Japan (Period: April 2019 to March 2022)

TEPCO

Sea water monitoring results at near the intake for seawater to be used for dilution during the discharge of ALPS treated water have confirmed that values are similar to those outside of the term of the discharge.

2-7. Monitoring results for seabed soil inside the Unit 5/6 intake open channel (1)

TEPCO

2-7. Monitoring results for seabed soil inside the Unit 5/6 intake open channel (2)

The following shows monitoring results for seabed soil inside the unit 5/6 intake open channel from August 2022 to April 2025.

		Before construction	FY2022	2023						2	2024					2025				
Sampling points		2017 to July 2021	Aug. ~ Mar.	Apr. ~ Dec.	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.
North side of the Unit 5/6 open channel	Cs-134	4.4~52.3	31.5~39.8	32.0~69.5	44.5	51.1	34.6	34.4	34.8	53.6	51.4	40.4	59.0	64.5	38.1	57.6	37.4	45.4	38.7	45.0
	Cs-137	163.6~678.6	303.2~468.1	216.7~2975.0	1,210.0	1,270.0	195.2	510.4	461.7	1,169.0	2,107.0	1,337.0	1,135.0	826.2	922.9	725.1	615.9	1,079.0	741.1	850.5
-2 North side of the Unit 5/6	Cs-134	14.4~58.5	32.5~38.3	-																
North side of the silt fence (GL-0.5m)	Cs-137	310.0~689.8	299.1~404.0	-	*Only sampled from the surface (GL ± 0m) since sand was removed during dredging															
South side of the partition weir (South side of the silt fence)	Cs-134	723.0	34.5~65.6	48.8~97.1	75.2	38.2	52.8	35.1	50.6	48.1	39.7	58.2	55.7	64.5	42.5	57.6	39.4	38.9	48.3	55.0
	Cs-137	6,475.0	412.8~3,331.0	323.8~4943.0	2,868.0	353.9	1,205.0	613.8	1,125.0	2,086.0	1,308.0	1,342.0	1,638.0	1,622.0	1,190.0	1,863.0	1,006.0	1,185.0	1,340.0	1,889.0
South side of the partition weir	Cs-134	183.0	30.9~68.7	37.1~234.8	153.3	115.8	42.4	26.5	36.9	39.2	29.5	41.4	38.1	48.6	31.0	29.8	33.8	28.9	39.2	36.7
2 (South side of the silt fence)	Cs-137	1,893.0	360.8~2,671.0	295.9~9519.0	9,737.0	3,345.0	723.9	348.9	257.0	253.0	409.7	419.6	361.7	356.2	227.4	246.4	258.6	252.8	245.6	306.9
Linit E intoko	Cs-134	-	101.6~3,546.0	50.2~690.7	61.8	50.3	177.8	114.8	79.6	50.3	40.3	64.9	69.3	83.5	52.0	50.7	35.9	35.9	39.7	44.4
Unit 5 Intake	Cs-137	-	3,301.0~144,000.0	951.7 ~ 26400.0	3,981.0	2,069.0	8,661.0	5,140.0	1,970.0	2,305.0	2,166.0	1,763.0	1,834.0	1,866.0	1,563.0	1,773.0	1,656.0	1,898.0	2,175.0	1,587.0
North side of	Cs-134	-		35.6~147.0	64.4	161.2	46.4	40.4	38.3	37.0	41.6	55.0	50.1	55.7	33.1	42.7	38.4	59.7	30.0	44.4
the partition weir	Cs-137	_		437.1~5795.0	3,145.0	8,371.0	829.4	2,427.0	1,551.0	764.6	1,066.0	3,371.0	4,154.0	1,191.0	1,460.0	2,118.0	1,060.0	1,878.0	1,388.0	1,834.0
East side of scaffolding for the heavy machinery	Cs-134	_		40.2~166.1	58.6	31.3	55.3	37.8	87.1	34.1	40.7	49.1	74.8	58.6	48.2	63.2	40.0	42.8	42.2	50.0
	Cs-137	_		592.4~8303.0	630.9	178.7	3,446.0	1,694.0	1,148.0	891.0	1,884.0	1,020.0	1,654.0	1,606.0	955.9	1,392.0	1,332.0	1,447.0	1,710.0	1,295.0

𝔆 Unit: Bq/liter, Figures in gray were below the detection limit

TEPCO

1. History of the discharge of ALPS treated water (Management number* : 24-7-11)

2. Performance of the discharge of ALPS treated water (Management number* : 25-1-12)

3. Status of the dismantling of the J9 area tanks

4. Transfer of ALPS treated water in preparation for the future discharges

(Reference) Sea area monitoring history after the commencement of discharge

* The management number is made up of the fiscal year, followed by the discharge number for that fiscal year, and the total number of discharges to date. For example, "24-7-11" indicates that the data is for the seventh discharge of 2024, which is the eleventh discharge to date.

3. Status of dismantling of the J9 area tanks

- > On February 13, 2025 the J9 area tanks were taken out of service and dismantling began on February 14, 2025.
- Dismantling of the fifth tank was completed on April 21.

Direction of [J9 area] photograph N 4+ Capacity: 700m³/tank Quantity: 12 Stored water: ALPS treated water B6 B5 J9 area A3 B4 A2 В3 B2 AI B1 J9 tanks area : Dismantling completed

After completing the dismantling of the forth tank (April 10)

<Tank Dismantling Results>

Tank number	Dismantling completed date
A6	Mar 4, 2025
A5	Mar 14, 2025
A4	Mar 31, 2025
A3	Apr 10, 2025
A2	Apr 21, 2025

TEPCO

1. History of the discharge of ALPS treated water (Management number* : 24-7-11)

2. Performance of the discharge of ALPS treated water (Management number* : 25-1-12)

3. Status of the dismantling of the J9 area tanks

4. Transfer of ALPS treated water in preparation for the future discharges

(Reference) Sea area monitoring history after the commencement of discharge

* The management number is made up of the fiscal year, followed by the discharge number for that fiscal year, and the total number of discharges to date. For example, "24-7-11" indicates that the data is for the seventh discharge of 2024, which is the eleventh discharge to date.

4. Transfer of ALPS treated water in preparation for the future discharges **TEPCO**

Transfer of ALPS treated water from K3 area Group A/B and J1 area Group E to measurement/confirmation facility tank group C in preparation for the discharge of Management number: 25-2-13 was conducted from April 3, 2025. It will be completed on April 25, 2025. Circulation/agitation will be commenced from May 9, 2025 and sample will be taken on May 16, 2025.

1. History of the discharge of ALPS treated water (Management number* : 24-7-11)

2. Performance of the discharge of ALPS treated water (Management number* : 25-1-12)

3. Status of the dismantling of the J9 area tanks

4. Transfer of ALPS treated water in preparation for the future discharges

(Reference) Sea area monitoring history after the commencement of discharge

* The management number is made up of the fiscal year, followed by the discharge number for that fiscal year, and the total number of discharges to date. For example, "24-7-11" indicates that the data is for the seventh discharge of 2024, which is the eleventh discharge to date.

within 3km of the power station

within a 10km square in front of the power station

[Reference] Sea area monitoring plan

for obtaining quick measurements of the concentration of tritium in seawater

O We have engaged in monitoring to obtain quick measurements of the concentration of tritium in seawater with targeting the upper detection limit for 10Bq/liter, and index to determine discharge suspension (the discharge suspension level) was set.

**1 If bad weather during the discharge period prevents measurements for being taken for two consecutive days, on the following day (third day) if it is again expected that measurements cannot be taken, measured results will be quickly obtained from T-1 and T-2 .

%2 We have engaged in monitoring daily since the commencement of discharge in August 2023, but the monitoring plan was changed on December 26, 2023 in light of actual measurements taken during discharge (<u>Announced on December 25, 2023</u>)