ALPS Treated Water Discharge Status Update and FY2025 ALPS Treated Water Discharge Plan

March 27, 2025

Tokyo Electric Power Company Holdings, Inc.

- 1. Performance of the discharge (Management number* : 24-7-11)
- 2. Status of the dismantling of the J9 area tanks
- 3. Transfer of ALPS treated water in preparation for the future discharges
- 4. FY2025 ALPS treated water discharge plan

(Reference) Sea area monitoring history after the commencement of discharge

* The management number is made up of the fiscal year, followed by the discharge number for that fiscal year, and the total number of discharges to date. For example, "24-7-11" indicates that the data is for the seventh discharge of 2024, which is the eleventh discharge to date.

1. Performance of the discharge (Management number* : 24-7-11)

2. Status of the dismantling of the J9 area tanks

3. Transfer of ALPS treated water in preparation for the future discharges

4. FY2025 ALPS treated water discharge plan

(Reference) Sea area monitoring history after the commencement of discharge

* The management number is made up of the fiscal year, followed by the discharge number for that fiscal year, and the total number of discharges to date. For example, "24-7-11" indicates that the data is for the seventh discharge of 2024, which is the eleventh discharge to date.

1. Overview

We are planning to conduct the discharge of ALPS treated water (management number: 24-7-11) as follows.

In this report, we will explain that there was no abnormality in parameters and sea area monitoring from commenced to March 24, 2025. FY2023

Management number	Tank group	Tritium concentration	Commenced	Completed	Amount of discharge	Amount of tritium radioactivity
23-1-1	Group B	14 x 10 ⁴ Bq/liter	Aug 24, 2023	Sep 11, 2023	7,788m ³	Approx. 1.1 trillion Bq
23-2-2	Group C	14 x 10 ⁴ Bq/liter	Oct 5, 2023	Oct 23, 2023	7,810m ³	Approx. 1.1 trillion Bq
23-3-3	Group A	13 x 10 ⁴ Bq/liter	Nov 2, 2023	Nov 20, 2023	7,753m ³	Approx. 1.0 trillion Bq
23-4-4	Group B	17 x 10 ⁴ Bq/liter	Feb 28, 2024	Mar 17, 2024	7,794m ³	Approx. 1.3 trillion Bq
FY2024						
Management number	Tank group	Tritium Concentration	Commenced	Completed	Amount of discharge	Amount of tritium radioactivity
24-1-5	Group C	19 x 10 ⁴ Bq/liter	Apr 19, 2024	May 7, 2024	7,851m ³	Approx. 1.5 trillion Bq
24-2-6	Group A	17 x 10 ⁴ Bq/liter	May 17, 2024	Jun 4, 2024	7,892m ³	Approx. 1.3 trillion Bq
24-3-7	Group B	17 x 10 ⁴ Bq/liter	Jun 28, 2024	Jul 16, 2024	7,846m ³	Approx. 1.3 trillion Bq
24-4-8	Group C	20 x 10 ⁴ Bq/liter	Aug 7, 2024	Aug 25, 2024	7,897m ³	Approx. 1.6 trillion Bq
24-5-9	Group A	28 x 10 ⁴ Bq/liter	Sep 26, 2024	Oct 14, 2024	7,817m ³	Approx. 2.2 trillion Bq
24-6-10	Group B	31x 10 ⁴ Bq/liter	Oct 17, 2024	Nov 4, 2024	7,837m ³	Approx. 2.4 trillion Bq
24-7-11	Group C	31x 10 ⁴ Bq/liter	Mar 12, 2025	Mar 30, 2025	7,800m ³	Approx. 2.4 trillion Bq
					*Black texts: r	esults Grav texts: nlan

T			-	0
	=	r		
		_		

	Outlin	ne of discharge for group K4-C						
Attrib	Concentration of the 30 types of radionuclides (excluding tritium) in scope of measurement/evaluation	Within regulatory requirements (sum of the ratios of concentrations of radioactive substances is less that (sum of the ratios of concentration: 0.076)	of legally required n 1) (details on p1 of the link)					
utes c	Tritium concentration	31 x 10 ⁴ Bq/liter	(details on p2 of the link)					
of the trea	Concentration of the 38 significant types of radionuclides measured voluntarily	No significant radionuclides identified	(details on p3 of the link)					
ated v	Status of water quality assessment	Within government and prefectural requirements	(details on p4 of the link)					
vater	Water temperature	Same as outdoor temperature. After diluted to 740 times (design dilution factor), the same as plant's thermal discharge)	same as sea water tempe	rature (not				
Expected	volume of treated water discharge	Approximately 7,800m ³						
Treated v	vater flow rate	Approximately 460m ³ /day (set not to exceed designed maximum on 500m ³ /da	ау)					
Dilution s	ea water flow rate	Approximately 340,000m ³ /day (same speed as walking in the tunnel [approximated 1m/second])						
Concentra	ation of tritium after dilution	Approximately 420 Bq/liter						
Term of d	lischarge	March 12, 2025 – March 30, 2025 (planned)						

1-2. Analysis Results of ALPS Treated Water in the Measurement/Confirmation Tanks (Management number: 24-7-11)

Pre-discharge analysis results for the samples taken from the measurement/confirmation tank (Group C) on January 14, 2025, were obtained. <u>It was confirmed that the water satisfies discharge</u> <u>requirements</u> (Table 1. Disclosed on March 6, 2025).

- Item 1: For 30 nuclides to be measured and assessed, <u>the sum of the ratios of the concentration of each radionuclide</u> <u>to the regulatory concentration is 0.076</u>, and it is confirmed to be less than 1.
- Item 2: Analysis results of tritium concentration is <u>31 x 10⁴ Bq/liter</u>, and it is confirmed to be less than 1 million Bq/liter.
- Item 1/2: The external agency consigned by TEPCO (Kaken) and the third-party consigned by the Japanese Government (JAEA)^{*1} obtained the same results from their analyses.
- Item 3/4: It was confirmed that operational targets have been satisfied.

*1 ALPS treated water third-party analysis (<u>https://fukushima.jaea.go.jp/okuma/alps/index_e.html</u>)

TEPCO

	Items	Requirement basis	Operational Target	Analysis Results
1	Nuclide to be measured and assessed (30 nuclides)	Implementation	The sum of the ratios of the concentration of each radionuclide to the regulatory concentration, except for tritium, is less than 1	0.076 (< 1)
2	Tritium	pian	Tritium concentration is less than 1 million Bq/liter	31 x 10 ⁴ Bq/liter (less than 1 million Bq/liter)
3	Nuclides voluntarily checked to ensure that they are not significantly present (38 nuclides)	Voluntary	No significant concentrations were found of any of the nuclides	None of the nuclides are present in significant consternation
4	General water quality: 44 criteria		Pre-check of water quality standards ^{*2}	All criteria satisfied

Table 1. Pre-discharge analysis results of water in the measurement/confirmation tank (Management number: 24-7-11)

*2 Water sampled from the discharge vertical shaft (upper-stream storage) once a year to confirm that legal requirements are being satisfied

For 30 nuclides to be measured and assessed, the sum of the ratios of the concentration of each radionuclide

to the regulatory concentration is 0.076, and it is confirmed to be less than 1.

		Pre-discharge Analysis Results of ALPS Treated Water in the Measurement/Confirmation Tanks (1/4)										
	Samp	ole Name	ALPS Treated W	ater in the Mea	surement/Confir	mation Tanks	Group C	1	Nuclides	o be measured and asse	essed (29 nuclides) :	
	Date and 1	Time of Sampling	January 14, 2025	9:55				,	Summary The sur	n of the ratios of the con	centration of each	0.076
	Storage	Volume (m ²)	8958		,				radio	nuclide to the regulator	y concentration	(Confirmed to be less than 1)
				,								
Nuclides to be	Radioz	activity An	alysis: Nuclides to	o be measured a	and assessed (30	nuclides)						
				TERCO	Analysis F	Results	KANCEL Co. 1 hd		Ratios to Regulator	Concentration Limit	Regulatory	
hasses has harused	No.	Nuclide	Analysis Value	I EPCO	Detection Limit	Apphysic Malue	KAKEN CO.,Lto	Detection Limit	TERCO	KAKEN Co. 1 td	Concentration Limit	Analysis Method *4
			(Ba/L)	(Ba/L)	(Ba/L)	(Bo/L)	(Ba/L)	(Ba/L)	TEPCO	KAKEN CO., Ltu.	(Bq/L)	
(30 nuclides)	11	C-14	8.5E+00	+ 2.2E+00	2.1E+00	9.7E+00	+ 1.2E+00	9.6E-01	4.2E-03	4.8E-03	2000	Measurement
	2	Mn-54	ND	-	2.4E-02	ND	_	1.9E-02	less than 2.4E-05	less than 1.9E-05	1000	Measurement
	3	Fe-55	ND	-	1.7E+01	ND	-	1.2E+01	less than 8.4E-03	less than 6.1E-03	2000	Measurement
	4	Co-60	2.2E-01	± 4.5E-02	2.4E-02	2.2E-01	± 3.3E-02	1.9E-02	1.1E-03	1.1E-03	200	Measurement
	5	Ni-63	ND	-	9.2E+00	ND	—	6.1E+00	less than 1.5E-03	less than 1.0E-03	6000	Measurement
	6	Se-79	ND	_	1.0E+00	ND	-	1.5E+00	less than 5.2E-03	less than 7.7E-03	200	Measurement
	7	Sr-90	6.2E-01	± 6.2E-02	3.6E-02	5.3E-01	± 6.8E-02	2.8E-02	2.1E-02	1.8E-02	30	Measurement
Analysis results of	8	Y-90	6.2E-01	_	3.6E-02	5.3E-01	_	2.8E-02	2.1E-03	1.8E-03	300	SH90/YH90 Redirective Equilibrium Assessment
	11 0	2.22	1.4E-01	± 1.8E-02	7.6E-02	1.4E-01	± 3.3E-02	6.3E-02	1.4E-04	1.4E-04	1000	Measurement
radioactivity (Bg/liter)	10	Ru-106	ND	_	2.2E-01	ND	_	1.9E-01	less than 2.2E-03	less than 1.9E-03	100	Measurement
	12	Sb-125	1.2E-01	+ 6 5E-02	0.3E-02	8.25-02	+ 5 1E-02	5.5E=02	1 6E-04	1 0E-04	900	Measurement
	13	Te-125m	4.6E-02	± 0.5E-02	3.4E=02	3.0E=02	± 5.12-02	2.8E=02	5 1E-05	3.4E-05	900	En-12678-1257 Reductive Exultation January 1
	14	I-129	1.3E-01	+ 3.6E-02	9.0E-03	1.4F-01	+ 3.8E-02	2.6E-02	1.4E-02	1.5E-02	9	Measurement
	15	Cs-134	ND	_	2.9E-02	ND	_	2.0E-02	less than 4.9E-04	less than 3.4E-04	60	Measurement
	16	Cs-137	1.4E-01	± 3.1E-02	2.7E-02	1.5E-01	± 2.5E-02	2.2E-02	1.6E-03	1.6E-03	90	Measurement
	17	Ce-144	ND		3.4E-01	ND	_	2.7E-01	less than 1.7E-03	less than 1.3E-03	200	Measurement
	18	Pm-147	1.0	-	3.4E-01	ND	_	2.4E-01	less than 1.1E-04	less than 7.9E-05	3000	Eu-154 Relative Ratio Assessment
Ratios to Regulatory	19	C 101	ND	-	1.3E-02	ND	-	9.1E-03	less than 1.6E-06	less than 1.1E-06	8000	Eu-154 Relative Ratio Assessment
	20	Eu-154	ND		7.6E-02	ND	_	5.3E-02	less than 1.9E-04	less than 1.3E-04	400	Measurement
Concentration Limit	21	Eu-155	ND	_	2.0E-01	ND	-	1.4E-01	less than 6.6E-05	less than 4.5E-05	3000	Measurement
	22	0-234									20	Gross Alpha
	23	0-230 Np-237									20	Gross Alpha
	25	Pu-238									4	Gross Alpha
	26	Pu-239	ND	-	2.6E-02	ND	_	2.4E-02	less than 6.4E-03	less than 6.0E-03	4	Gross Alpha
	27	Pu-240							*3	*3	4	Gross Alpha
	28	Am-241									5	Gross Alpha
	29	Cm-244									7	Gross Alpha
	30	Pu-241	ND	_	7.0E-01	ND	—	6.6E-01	less than 3.5E-03	less than 3.3E-03	200	Pu-238 Relative Ratio Assessment
	The su	um of the ratio	s of the concentration	of each radionuclide t	to the regulatory conce	entration (sum of th	e ratios to regulatory	concentration limit)	less than 7.6E-02	less than 7.2E-02		
	- ND in	dicates that	analysis result is les	is than the detection	m limit.							
	 Value 	es are expre	ssed in exponential r	notation.		_						
	For e	xample, "3.1	E+01" means "3.1×1	10" and equals 31.	Similarly, "3.1E+00)" means "3.1x10"	" and equals 3.1, a	nd "3.1E-01" means	"3.1x10"" and equals	0.31.		
	-1 Und	certainty re-	calculated using "Evi	or analysis data.	Coverage Eactor	k=2"						
	*2 Reg	ulatory conc	entration limits stin	lated in the Recul	ations of the Safety	and Physical Prof	ection of Specific N	uclear Euel Materia	l at Eukushima Daiichi	Nuclear Power Station of	f the Tokyo Electric Pr	wer Company, Incorporated
	(Att	ached Chart	1, Row 6: Concentra	tion limits in the w	ater outside of the	environmental m	onitoring area [in t	his chart Bo/cm ³ ha	s been converted into	Bq/L])	and range breaking re	
	*3 The	ratio to regu	latory concentration	limit for alpha-rad	lionuclides has been	assessed using t	the lowest regulato	ry concentration lin	nit for all the target nuc	lides.		
	*4 Ana	lysis method	is are as follows:				-		-			
	Mea	surement - '	The concentrations o	f each radionuclide	have been calculat	ed by directly me	asuring/analyzing	radioactivity intens	ity and the quantity of	the element.		
	Gros	ss Alpha - Ti	he total amount of a	lpha-radionuclides	in the specimen are	calculated by dir	ectly measuring al	pha rays.				
	Rad	ioactive Equ	ilibrium Assessment	- Calculated using	a physical phenom	enon in which the	amount of radioad	tivity of one radion	uclide and another radi	onuclide produced by th	e decay of that radior	nuclide exist in a certain ratio.
	Rela	ative Ratio A	ssessment - Calcula	ted based on the a	ssessment values o	f radionuclides th	at existed inside th	e reactor while con	sidering radionuclide d	ecay and migration into	ALPS treated water.	

6

Analysis results of **tritium concentration is 31 x 10⁴ Bq/liter**.

tium Co	ncentr	ation (I	3q/liter)						
		Pre-c	lischarge Analysis	s Results of ALP	S Treated Wate	r in the Measurer	ment/Confirmati	ion Tanks (2/4)	
							Summary	31 x 10 ⁴ Bq/L	(confirmed to be less than 1 million Bq/L)
activity Ana	alysis: 1	ritium							
				Analysis	Results				
Nuclide		<u> </u>	TEPCO			KAKEN Co.,Ltd.		Analysis Objective	Analysis Method *3
luciuc	Analys	is Value	Uncertainty *1	Detection Limit	Analysis Value	Uncertainty *1	Detection Limit	, and yold objective	, analysis ricchica is
	(В	iq/L)	(Bq/L)	(Bq/L)	(Bq/L)	(Bq/L)	(Bq/L)		
H-3	3.1	E+05	± 1.7E+04	1.9E+01	3.0E+05	± 2.2E+04	2.1E+01	*2	Measurement
	activity Ana Nuclide H-3	activity Analysis: 1 Nuclide Analys H-3 3.1	tium Concentration (I Pre-c activity Analysis: 1 ritium Nuclide Analysis Value (Bq/L) H-3 3.1E+05	tium Concentration (Bq/liter) Pre-discharge Analysis Activity Analysis: 1 ritium Nuclide Analysis Value (Bq/L) H-3 3.1E+05 ± 1.7E+04	tium Concentration (Bq/liter) Pre-discharge Analysis Results of ALPS Activity Analysis: 1 ritium Nuclide Analysis Value (Bq/L) H-3 3.1E+05 LTEPCO 1.9E+01	tium Concentration (Bq/liter) Pre-discharge Analysis Results of ALPS Treated Wate Analysis: 1 Nuclide Muclide Analysis Value (Bq/L) H-3 3.1E+05 ± 1.7E+04 1.9E+01 3.0E+05	tium Concentration (Bq/liter) Pre-discharge Analysis Results of ALPS Treated Water in the Measurer Analysis: 1 ritium Analysis Value Nuclide Analysis Value (Bq/L) (Bq/L) H-3 3.1E+05 ± 1.7E+04 1.9E+01 3.0E+05	tium Concentration (Bq/liter) Pre-discharge Analysis Results of ALPS Treated Water in the Measurement/Confirmation Summary Activity Analysis: 1 Nuclide Analysis Value Uncertainty *1 Betection Limit (Bq/L) (Bq/L) H-3	tium Concentration (Bq/liter) Pre-discharge Analysis Results of ALPS Treated Water in the Measurement/Confirmation Tanks (2/4) Summary 31 x 10 ⁴ Bq/L Activity Analysis: 1 Analysis Results Nuclide TEPCO Analysis Value (Bq/L) Uncertainty *1 (Bq/L) Detection Limit (Bq/L) Analysis Value (Bq/L) 1.9E+01 3.0E+05 ± 2.2E+04 2.1E+01 *2

· Values are expressed in exponential notation.

For example, "3.1E+01" means "3.1×10¹" and equals 31. Similarly, "3.1E+00" means "3.1x10⁰" and equals 3.1, and "3.1E-01" means "3.1x10⁻¹" and equals 0.31.

*1 "Uncertainty" refers to the accuracy of analysis data.

"Uncertainty" is calculated using "Expanded Uncertainty: Coverage Factor k=2".

*2 To confirm that the tritium concentration is less than 1E+06Bq/liter (less than 1 million Bq/liter), the maximum concentration stipulated in the implementation plan, ensuring that the tritium concentration after dilution is less than 1,500 Bq.

*3 Analysis method is as follows:

Measurement - The concentration of radionuclide has been calculated by directly measuring/analyzing radioactivity intensity and the quantity of the element.

<Excerpt from Treated Water Portal Site>

We voluntarily checked that the nuclides (38 nuclides) are not significantly present.
 We confirmed that all the 38 nuclides are not significantly present.

	Pre-discha	irge Analysis R	esults of ALPS Tr	reated Water i	n the Measureme	ent/Confirmation Tanks (3/4)	*1 *	O" indicates that the a	bsence of significant co	oncentrations was confirmed	by the following, and "x	x* indicates that significant concentrations of nuclide was conf	rmed.
					Cummany	No significant concentrations found of any of the purcides	11	- Concentration of r	lucide measured was b	elow detection limit	When we want to be dealer		
					Summary	no significant concentrations round of any of the nucloes		 For nuclide that na extremely small co 	impared to the regulato	radioactive equilibrium, etc., ary concentration limit, or in (other words, if it is less th	the the assessment value of the target nuclide is than 1/100 of the regulatory concentration limit	
							11	which is the value	set as the detection lim	it, then it shall be deemed to	be below the detection i	limit.	
Radioa	activity Analy	sis: Nuclides volu	intarily checked to	ensure that they	are not significantly	present (38 nuclides)	11	Nuclide	Assessmer	nt Values (Bq/L)	Concentration Limit		
		Т	EPCO	KAKEI	N Co.,Ltd.		11		TEPCO	KAKEN Co.,Ltd.	*3	-	
No.	Nuclide	Assessment *1	Detection Limit	Assessment *1	Detection Limit	Confirmation Method *2	11	Rh-103m Rh-106	_	-	2.0E+05 3.0E+05	-	
			(Bq/L)		(Bq/L)			Sn-119m	-	-	2.0E+03	1	
1	Fe-59	0	7.5E-02	0	3.5E-02		11	Te-127m	-	0.75.07	3.0E+02	-	
2	Co-58	0	2.3E-02	0	1.6E-02	1		Ba-137m	1.3E-01	1.4E-01	8.0E+05		
3	Zn-65	0	4.4E-02	0	3.2E-02	T I		Pr-144m	-	-	4.0E+04]	
4	Rb-86	0	2.9E-01	0	2.3E-01	1		Pr-144 Am-242m	_	-	2.0E+04 5.0E+00	-	
5	Sr-89	0	5.8E-02	0	4.7E-02	1		· A hyphen "-" ind	licates that the concent	tration of the target nuclide w	as below the detection li	limit.	
6	Y-91	Ö	2.7E+00	0	2.6E+00	1	11	Values are expres	sed in exponential notat	tion.			
7	Nb-95	Ŏ	3.0E-02	õ	1.8E-02	1	82 45	For example, *3.1	E+01" means "3.1×10	0"" and equals 31. Similarly,	"3.1E+00" means "3.1:	Ix10" and equals 3.1, and "3.1E-01" means "3.1x10" and	iquais 0.31.
8	Ru-103		3 0E-02	ŏ	3.6E-02	1	2 AI	easurement - The	concentrations of ea	ch radionuclide have bee	o calculated by direct	the measuring/analyzing radioactivity intensity and the	quantity of the elemer
-	Ag-110m	ŏ	2 55-02	ŏ	1.85-02	-	M	easurement (substil	buted with cross alph	a) - The total amount of a	alpha-radionuclides in	n the specimen are calculated by directly measuring all	tha ravs
10	Cd-115m	ĕ	1 100	ĕ	1.02-02			doective Bouildnum Assess	ment - Calculated using a phys	scal phenomenon in which the amou	nt of radioactivity of one radion	nuclide and another redionuclide produced by the decay of their redionuclide exis	in a certain ratio.
10	Cu-113iii	- ĕ	1.251.00	<u> </u>	1.1ET-00	-	Re	lative Ratio Assessment	- Calculated based on th	te assessment values of radior	uclides that existed inside	e the reactor while considering radionuclide decay and migration in	to ALPS treated water.
11	Sh-123	0	1.3E+00		8.9E-01	4	*3 Re	gulatory concentral	tion limits stipulated	in the Regulations of the	Safety and Physical F	Protection of Specific Nuclear Fuel Material	
12	Sn-126	0	1.5E-01		1.1E-01	4 1	at	Fukushima Dailchi	Nuclear Power Statio	on of the Tokyo Electric Po	ower Company, Incor	rporated.	
13	Sb-124	0	5.3E-02	0	4.3E-02	Measurement	(A	ttached Chart 1, Ro	w 6: Concentration I	imits in the water outside	of the environmenta	al monitoring area [in this chart Bq/cm³ has been conv	erted into Bq/L])
14	Te-123m	0	4.9E-02	0	4.0E-02						1-		
15	Te-127	0	7.9E-01	0	6.0E						< Exc	cerpt from Treated Water Po	ortal Site>
16	Te-129m	0	7.7E-01	0	6.7E-01								
17	Te-129	0	3.5E-01	0	5.3E-01								
18	Cs-136	0	2.5E-02	0	2.0E-02								
19	Ba-140	0	1.1E-01	0	1.0E-01								
20	Ce-141	0	1.0E-01	0	7.6E-02								
21	Pm-146	0	4.0E-03	0	3.2E-02								_
22	Pm-148m	0	2.5E-02	0	2.3E-02	1			1. 1				
23	Pm-148	0	1.2E-01		1.3E-01	1		Nuc	clides vo	Diuntarily	спеске	d to ensure that	
24	Eu-152	0	1.2E-01	0	1.0E-01	1					مر مر بالدمر م	(20, 1)	
25	Gd-153	0	1.7E-01	0	1.15 01	1		tne	y are no	ot significa	antiy pro	esent (38 nuclides)	
26	Tb-160	0	7.6E-02	0	6.1E-02	1							
27	Am-243	0	2.6E-02	0	2.4E-02								
28	Cm-242	Ö	2.6E-02	0	2.4E-02	Measurement (instituted with gross alpha)							
29	Cm-243	0	2.6E-02	0	2.4E-02		Ι.						
30	Rh-103m	ŏ	3.0E-02	õ	3.6E-02	Ru-103/Rh-103m Radioactive Equilibriu: Conservent		•		1.			
31	Rh-106	ŏ	2.2E-01	ŏ	1.9E-01	Ru-106/Rh-106 Radioactive Equilibrium Assessment.		Assess	sment r	esults			
32	Sn-119m	ŏ	5.5E-03	ŏ	4.1E-03	Sn-126 Relative Ratio Assessment		\frown			·		. C:
33	Te-127m	ŏ	8.1E-01	ŏ	6.1E-01	Te-127 Relative Ratio Assessment		0:	absence	e of signif	icant co	incentration was col	ntirmea
34	Cs-135	ŏ	1.8E-07	ŏ	1.4E-07	Cs-137 Relative Ratio Assessment		\sim ·	cignific	ant conco	ntration	was confirmed	
35	Ba-137m	ŏ	2.6E-02	ŏ	2.0E-02	Cs-137/Ba-137m Radioactive Equilibrium Assessment		<u>^ .</u>	SIGHTIC	ant conce	nuation	i was commed	
36	Pr-144m	ŏ	5.1E-03	ŏ	4.0E-03	Ce-144/Pr-144m Radioactive Equilibrium Assessment							
37	Pr-144	ŏ	3.4E-01	ŏ	2.7E-01	Ce-144/Pr-144 Radioactive Equilibrium Assessment							
38	Am-242m	ŏ	1.8E-04	ŏ	1.6E-04	Am-241 Relative Ratio Assessment							0
	11127211	Ŭ	102.01		2102.04	Ann 241 Relative Aduly Assessment							8 8

For 44 general water quality measurement items (voluntary check to confirm that there are no unusual water quality), it is confirmed that all criteria^{%1} satisfied.

※1: In accordance with Fukushima Prefecture's "Ordinance on Discharge Standards Based on the Air Pollution Control Act and Wastewater Standard based on the Water Pollution Prevention Act (attached Chart 2)", and "the Ordinance Enforcement Regulations Pertaining to the Preservation of the Living Environment in Fukushima (attached Chart 5)".

	General water qua	ality mea	asurement	items (44 criteria)	Ar	naly	ysis results			
					<	\leq				
Pr	e-discharge Analysis Results of ALF	PS Treated wa	ater in the Measur	ement/Confirmation Tanks (4/4)		25	1,2-Dichioroethane	mg/L	< 0.004	0.04 or less
			Summary	Criteria saustied	11 IF	26	1,1-Dichloroethylene	mg/L	<0.1	1 or less
			,		'	27	Cis-1,2-Dichloroethylene	mg/L	<0.04	0.4 or less
Gene	ral Water Quality A sysis: Voluntary	check to confi	m that the are r	o unusual water quality (44 criteria)		28	1,1,1-Trichloroethane	mg/L	<0.3	3 or less
No.	Measurement Items	Unit	Analysis Result	Criteria *1	11 15	29	1,1,2-Trichloroethane	mg/L	<0.006	0.06 or less
1	Hydrogen Ions (pH)	-	8.3	Sea Area 5.0~9.0	11 15	30	1,3-Dichloropropene	mg/L	<0.002	0.02 or less
2	Suspended Solids (SS)	mg/L	2	Maximum: 70 or less Average: 50 or less	11 15	31	Thiuram	mg/L	< 0.006	0.06 or less
3	Chemical Oxygen Demand (COD)	mg/L	1.8	Maximum: 40 or less Average: 30 or less	11 15	32	Simazine	mg/L	< 0.003	0.03 or less
4	Boron	mg/L	0.5	Sea Area 230 or less	11 15	33	Thiobencarb	mg/L	<0.02	0.2 or less
5	Soluble Iron	mg/L	<1	10 or less	11 15	34	Benzene	mg/L	<0.01	0.1 or less
6	Copper	mg/L	<0.1	2 or less	11 15	35	Selenium	mg/L	<0.01	0.1 or less
7	Nickel	mg/L	<0.1	2 or less	11 F	36	Fenitrothion	mg/L	< 0.003	0.03 or less
8	Chrome	mg/L	<0.1	2 or less	11	37	Phenols	mg/L	<0.1	1 or less
9	Zinc	mg/L	0.1	2 or less	11	38	Fluorine	mg/L	<0.5	Sea Area 10 or less
10	Biochemical Oxygen Demand (BOD)	mg/L	1	Maximum: 40 or less Average: 30 or less	11	39	Soluble Manganese	mg/L	<1	10 or less
11	Coliform Count	pcs/cm ³	1	3000 or less	F	40	Ammonia, Ammonium Compounds	mg/L	<1	100
12	Cadmium	mg/L	<0.01	0.03 or less	11 -	41	Nitrite Compounds and Nitrate Compounds	mg/L	4	100 or less
13	Cyanide	mg/L	<0.05	0.5 or less] F	42	1,4-Dioxane	mg/L	< 0.05	0.5 or less
14	Organic Phosphorus	mg/L	<0.1	1 or less	F	43	n-Hexane Extractables (Mineral Oils)	mg/L	<0.5	1 or less
15	Lead	mg/L	<0.01	0.1 or less		44	n-Hexane Extractables (Animal and Vegetable Oils and Fats)	mg/L	<1	10 or less
16	Hexavalent Chromium	mg/L	<0.05	0.2 or less		. ^ "	less than" symbol (<) indicates that	t the quantity	is below quantita	tion limit
17	Arsenic	mg/L	<0.01	0.1 or less		• •		it the qualitity	is below quantita	uon mnic.
18	Mercury	mg/L	<0.0005	0.005 or less	*	*1 In a	accordance with Fukushima Prefecture's "Ordinanc	e on Discharge Stan	dards Based on the Air P	ollution Control Act and Wastewater Standards
19	Alkyl Mercury	mg/L	< 0.0005	Not Detected *2		and	d "the Ordinance Enforcement Regulations Pertaini	ing to the Preservatio	の正法に思う(新古墓牛及び) on of the Living Environr	N目の周的正法に届りN部の基本を定める来朝(別表第2)], nent in Fukushima (attached Chart 5) [福島県生活
20	Polychlorinated Biphenyl	mg/L	<0.0005	0.003 or less		環境	亀の保全等に関する条例施行規則(別表第5)]".			
21	Trichlorethylene	mg/L	<0.03	0.1 or less	1	*2 "No wb/	t Detected" indicates that, as described in "Minister on the state of water pollution is assessed in discha	rial Ordinance on Eff	luent standards (attached	d Table 1) [排水基準を定める省令 (別表第一)]", / the Minister of the Environment
22	Tetrachloroethylene	mg/L	<0.01	0.1 or less		the	result is below the limit of quantification (Alkyl Me	ercury: 0.0005 mg/l	iter) of the assessment n	nethod.
23	Dichloromethane	mg/L	<0.02	0.2 or less	`					0
24	Carbon Tetrachloride	mg/L	<0.002	0.02 or less				<excer< td=""><td>pt from Treated</td><td>d Water Portal Site$>\qquad$ $igee$</td></excer<>	pt from Treated	d Water Portal Site $>\qquad$ $igee$

1-3. Commencement of seventh discharge in FY2024 of ALPS treated water into the sea (discharge in two-stage)

- On March 10, 2025, we measured concentration of tritium in the water sampled from the upper-stream storage as the First stage of the Seventh discharge in FY2024 of ALPS treated water into the sea (discharge in two-stage) and confirm that there are no significant differences between the calculated estimates and actual measurements for tritium concentrations, and that the water is being diluted/mixed, and that the concentration of tritium is less than the discharge criteria of 1,500Bq/liter (less than the operational limit of 700Bq/liter). In addition to this, we confirmed that there have been no changes in facility status by using seawater flow values and ALPS treated water flow values to confirm that the water is being diluted. Following these results, we decide to proceed to the Second Stage.
- The sample of the water was also analyzed by the Japan Atomic Energy Agency (JAEA) who confirmed that the concentration of tritium is less than the discharge criteria of 1,500Bq/liter (less than the operational limit of 700Bq/liter.
- Therefore, we started up the seawater transfer pumps on March 12, 2025, at 1:25 p.m., which marked the commencement of the discharge into the sea from the measurement/confirmation facility tank group C.

Procedure of discharge in two-stage is as follows:

First Stage ··· General performance confirmation of components (no discharge into the sea)

- ① Upper-stream storage emptied
- ② ALPS treated water (measurement/confirmation tank group C) tritium concentration entered into system
- ③ One seawater transfer pump started up
- ④ ALPS treated water transfer pump started up after the seawater transfer pump reaches rated flow
- (5) ALPS treated water transfer flow automatically adjusted in accordance with tritium concentration so that the ALPS treated water diluted by seawater concentration is 700Bq/liter^{*}
- 6 After rated flow has been reached, the ALPS treated water transfer pump and the seawater transfer pump will be shutdown % Value determined so that the upper operational limit of 1,500Bq/liter is not exceeded in consideration of analysis uncertainty and instrument discrepancies

Components shall be activated as mentioned above to confirm there are no problems with performance. The concentration of tritium in the water diluted by seawater in upper-stream storage shall also be measured to confirm that through calculated estimates and actual measurements that there had been no significant difference in the concentration of tritium and less than 700Bq/liter.

Second Stage · · · Continuous discharge into the sea

- ⑦ Two seawater pumps started up in succession (commencement of discharge of diluted water from upper-stream storage)
- (8) After the two seawater pumps have reached rated flow the ALPS treated water transfer pump shall be started up (continuous discharge)

("the post-dilution tritium concentration" during continuous discharge shall be managed using calculated values and analysis values from water sampled daily from downstream of the seawater flow header)

[Reference] Method of discharge in two stage

- ① The discharge vertical shift (upper-stream storage) emptied
- 2 A small amount (approximately 0.7m³) of ALPS treated water will be diluted with seawater (approximately 1,200m³) and then held in the discharge vertical shift (upper-stream storage).
- ③ It will be confirmed that there are no problems with the series of operations of the ALPS treated water dilution/discharge facilities and that the concentration of tritium in water stored in the discharge vertical shift (upper-stream storage) is that through calculated estimates and actual measurements that there had been no significant difference in the concentration of tritium, and less than 700Bq/liter. As a measure to ensure that the condition of the facilities has not changed, confirm that the water is being diluted as designed by flow volumes of the seawater and ALPS treated water. [Processes ① through ③ comprise the First Stage].
- ④ Then, TEPCO will move on to the Second Stage which will be continuous discharge into the sea.

1-4. Operating parameter records during the discharge (1/3) **TEPCO**

We are able to operate ALPS treated water transfer systems and seawater systems without issue.

^{*1:} The flowmeters are reduplicate, so the higher of the figures from both meters was used.

*2: Total for systems A and B

1-4. Operating parameter records during the discharge (2/3)

No abnormalities are seen in the figures from the ALPS treated water transfer pump outlet radiation monitor.

 As shown in the schematic on the upper right, ALPS treated water was passed through System A. (System B was filled with filtrated water)

Overview of ALPS treated water dilution/discharge facility

1-4. Operating parameter records during the discharge (3/3) **TEPCO**

Temporary increase in values, possibly due to rain was observed, but no abnormalities were seen in the readings.

1-5. Tritium concentrations after dilution during the discharge **TEPCO**

During the discharge period, water was sampled daily from the seawater pipe to analyze tritium concentrations.

⇒Confirmed to be less than the upper limit for the operation: 1,500Bq/liter

	3/12	3/18~3/23
Calculated value: Time of data acquisition	16:00	7:00
Analysis value: Time of specimen sampling	16:11	6:00~9:00

The dilution rate had always been kept at over 100 times during the discharge.

1-6. Sea area monitoring history (1/2)

(Unit: Bg/liter)

O Measurement results of tritium concentrations in water sampled in the vicinity of the discharge outlet (within 3km of the power station) and outside of the vicinity of the discharge outlet (within a 10km square in front of the power station) are all below indices (discharge suspension level and investigation level).

	Sampling location*3	Frequency	Februa	ry 2025				March	1 2025			
	Sampling location	riequency	24	26	3	10	12*4	13	14	2025 14 15 I - - I - - I <	16	17
	T-1	Twice a week ^{*1}	—	_	<8.6	-	<6.9	<5.9	_	_	—	_*5
	T-2	Twice a week ^{*1}	—		<8.6		<6.9	<5.9			—	_*5
	T-0-1	Once a day ^{*2}	<8.0		<8.5	<5.5	_* ⁵	_*5	<7.5	<7.7	<6.1	_*5
	T-0-1A	Once a day ^{*2}	<8.0	—	<7.7	<8.9	_ *5	_*5	16	7.8	<6.9	_*5
In the vicinity of the	T-0-2	Once a day ^{*2}	<8.0	-	<7.7	<8.9	_ *5	_*5	<7.4	<7.7	<6.2	_*5
discharge outlet	T-0-3A	Twice a week ^{*1}	-	-	<7.7	-	_ *5	_*5	<6.6	-	-	_*5
outlet	T-0-3	Twice a week ^{*1}	-	_	<7.6	-	_*5	_*5	<6.6	_	-	_*5
	T-A1	Twice a week ^{*1}	—	—	<5.4	-	_ *5	_*5	<6.1	—	-	_*5
	T-A2	Once a day ^{*2}	<7.2	—	<5.5	<8.6	_ *5	_*5	<6.1	<6.2	<6.9	_*5
	T-A3	Twice a week ^{*1}	_	_	<5.4	_	_*5	*5	<6.1	_	_	*5
	T-D5	Once a week	<7.9	_	<8.6	<5.5	-	_	—	_	-	_*5
Outside the vicinity of the	T-S3	Once a month	-	<8.0	_	-	-	_	<8.2	_	-	_
discharge outlet	T-S4	Once a month	—	<7.9	_	_	—	_	<8.3	_	—	—
	T-S8	Once a month	_	_	_	_	_	_	<8.3	_	_	_

X: A "less than" symbol (<) indicates that the analysis result was less than the detection limit

indicates that the detected value

: Term of discharge of ALPS treated water (Management number: 24-7-11)

*1: Conduct twice a week during the discharge period and for once a week following the completion of discharge. Conduct once a week outside the discharge period, excluding one week following the completion of discharge

*2: Conduct once a week during the discharge period and once a week following the completion of discharge. Conduct once a month outside the discharge period, excluding one week following the completion of discharge

*3: For sampling locations, refer to "[Reference] Measurement monitoring plan"

*4: Sampled after the commencement of discharge at 4PM

*5: Sampling suspended due to bad weather condition

(Unit: Bq/liter)

	Compling location*3	Frequency	March 2025							
	Sampling location ³	FrequencyTwice a week*1Twice a week*1Once a day*2Once a day*2Once a day*2Twice a week*1Twice a week*1Twice a week*1Once a day*2Twice a week*1Once a day*2Twice a week*1Once a week*1Once a week*1Once a week*1Once a monthOnce a monthOnce a month	18	19	20	21	22			
	T-1	Twice a week ^{*1}	<7.3	_	<5.6	_	_			
In the vicinity of the discharge outlet	T-2	Twice a week ^{*1}	<7.3	_	<5.6	_	_			
	T-0-1	Once a day ^{*2}	<7.2	_*4	<6.2	<7.4	<8.1			
	T-0-1A	Once a day ^{*2}	56	_*4	8.1	41	13			
	T-0-2	Once a day ^{*2}	<7.2	_*4	<6.1	<7.5	<8.2			
	T-0-3A	Twice a week ^{*1}	<7.2	_	<6.9	_	_			
	T-0-3	Twice a week ^{*1}	<7.2	_	<6.1	_	_			
	T-A1	Twice a week ^{*1}	<7.2	_	<6.9	_	_			
	T-A2	Once a day ^{*2}	<7.2	_*4	28	<5.7	<7.5			
	Т-АЗ	Twice a week ^{*1}	<7.2	_	<6.9	_	_			
	T-D5	Once a week	<7.3	_	_	_	_			
Outside the	T-S3	Once a month	_	_	_	_	_			
Outside the vicinity of the discharge outlet	T-S4	Once a month	_	_	_	_	-			
	T-S8	Once a month	—	_	—	_	_			

X: A "less than" symbol (<) indicates that the analysis result was less than the detection limit

indicates that the detected value

: Term of discharge of ALPS treated water (Management number: 24-7-11)

*1: Conduct twice a week during the discharge period and for once a week following the completion of discharge. Conduct once a week outside the discharge period, excluding one week following the completion of discharge

*2: Conduct once a week during the discharge period and once a week following the completion of discharge. Conduct once a month outside the discharge period, excluding one week following the completion of discharge

*3: For sampling locations, refer to "[Reference] Measurement monitoring plan"

*4: Sampling suspended due to bad weather condition

[Reference] Comparison of tritium concentration in seawater TEPCO

Unit: Bq/liter				
60,000 Japan's Regulatory Standard (discharge outlet)*1	We have set a discharg level as TEPCO's operat	e suspension level a ional indices.	nd an investigation	
		Discharge suspension level	Investigation level	
10,000 WHO's Drinking Water Quality Guidelines	Within 3km of the power	700 Bq/L	350 Bq/L	
	Within a 10km square in front of the power station	30 Bq/L	20 Bq/L	
Tipped Support Limit of Hitdelin Concentration Indicated in the Coventment Follow Tipped Suppension Level (10 Locations within 3 km of the power station) 350 Investigation Level (10 Locations within 3 km of the power station) 350 Investigation Level (10 Locations within 3 km of the power station) Object Limit of the power station Object Limit of the power station <th c<="" th=""><td> If the discharge suspension be immediately suspendent of the investigation level is be inspected and the frequencessary. Even if the tritium consuspension level and Imbelow the Japan's reguent of the VHO's drinking water of assess that the surround the</td><td>n level is exceeded, the d. exceeded, facilities/op uency of monitoring wi centration exceeds i vestigation level), th latory standard of 60 quality guidelines of iding sea areas are s</td><td>e sea discharge will eration status will II be increased as ndices (Discharge ne levels are well 0,000 Bq/L and the 10,000 Bq/L, and we till safe.</td></th>	<td> If the discharge suspension be immediately suspendent of the investigation level is be inspected and the frequencessary. Even if the tritium consuspension level and Imbelow the Japan's reguent of the VHO's drinking water of assess that the surround the</td> <td>n level is exceeded, the d. exceeded, facilities/op uency of monitoring wi centration exceeds i vestigation level), th latory standard of 60 quality guidelines of iding sea areas are s</td> <td>e sea discharge will eration status will II be increased as ndices (Discharge ne levels are well 0,000 Bq/L and the 10,000 Bq/L, and we till safe.</td>	 If the discharge suspension be immediately suspendent of the investigation level is be inspected and the frequencessary. Even if the tritium consuspension level and Imbelow the Japan's reguent of the VHO's drinking water of assess that the surround the	n level is exceeded, the d. exceeded, facilities/op uency of monitoring wi centration exceeds i vestigation level), th latory standard of 60 quality guidelines of iding sea areas are s	e sea discharge will eration status will II be increased as ndices (Discharge ne levels are well 0,000 Bq/L and the 10,000 Bq/L, and we till safe.
Approx. 10 Detection limit of quick measurement Approx. 0.1-0.4 Detection limit of regular measurement Approx. 0.1-0.4 Detection limit of regular measurement Approx. 0.1-0.4 Detection limit 0 ~ 0.043 Bq/liter Historical range for seawater across Japan ²	It is expected that the be affected depending treated water to be relevalues than before will evaluated that the conditional	concentration of trif on the concentratio eased in the future, be detected. Even in centration will rema	tium in seawater wil n of tritium in the and higher n such cases, it is in below the	

investigation level and other indices.

*1: This standard has been stipulated based on the calculation that if a person were to drink approximately 2L of the water coming out of the discharge outlet of a nuclear facility every day for one year, his/her exposure would be 1mSv. *2: Source: Environmental Radioactivity and Radiation in Japan (Period: April 2019 to March 2022)

Sea water monitoring results at near the intake for seawater to be used for dilution during the discharge of ALPS treated water have confirmed that values are similar to those outside of the term of the discharge.

1-8. Monitoring results for seabed soil inside the Unit 5/6 intake open channel (1)

TEPCO

1-8. Monitoring results for seabed soil inside the Unit 5/6 intake open channel (2)

The following shows monitoring results for seabed soil inside the unit 5/6 intake open channel from August 2022 to March 2025.

Compliancesints		Before construction	FY2022	2023		2024								2025					
Sampling points		2017 to July 2021	Aug. ~ Mar.	Apr. ~ Dec.	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.
North side of the Unit 5/6 open channel	Cs-134	4.4~52.3	31.5~39.8	32.0~69.5	44.5	51.1	34.6	34.4	34.8	53.6	51.4	40.4	59.0	64.5	38.1	57.6	37.4	45.4	38.7
North side of the silt fence (GL±0m)	Cs-137	163.6~678.6	303.2~468.1	216.7~2975.0	1,210.0	1,270.0	195.2	510.4	461.7	1,169.0	2,107.0	1,337.0	1,135.0	826.2	922.9	725.1	615.9	1,079.0	741.1
-2 North side of the Unit 5/6	Cs-134	14.4~58.5	32.5~38.3	-		$\%$ Only sampled from the surface (GL \pm 0m) since sand was removed during dredging													
North side of the silt fence (GL-0.5m)	Cs-137	310.0~689.8	299.1~404.0	-															
South side of the partition weir (South side of the silt fence)	Cs-134	723.0	34.5~65.6	48.8~97.1	75.2	38.2	52.8	35.1	50.6	48.1	39.7	58.2	55.7	64.5	42.5	57.6	39.4	38.9	48.3
	Cs-137	6,475.0	412.8~3,331.0	323.8~4943.0	2,868.0	353.9	1,205.0	613.8	1,125.0	2,086.0	1,308.0	1,342.0	1,638.0	1,622.0	1,190.0	1,863.0	1,006.0	1,185.0	1,340.0
South side of the partition weir	Cs-134	183.0	30.9~68.7	37.1~234.8	153.3	115.8	42.4	26.5	36.9	39.2	29.5	41.4	38.1	48.6	31.0	29.8	33.8	28.9	39.2
② (South side of the silt fence)	Cs-137	1,893.0	360.8~2,671.0	295.9~9519.0	9,737.0	3,345.0	723.9	348.9	257.0	253.0	409.7	419.6	361.7	356.2	227.4	246.4	258.6	252.8	245.6
A Linia E interla	Cs-134	-	101.6~3,546.0	50.2~690.7	61.8	50.3	177.8	114.8	79.6	50.3	40.3	64.9	69.3	83.5	52.0	50.7	35.9	35.9	39.7
Unit 5 Intake	Cs-137	_	3,301.0~144,000.0	951.7~26400.0	3,981.0	2,069.0	8,661.0	5,140.0	1,970.0	2,305.0	2,166.0	1,763.0	1,834.0	1,866.0	1,563.0	1,773.0	1,656.0	1,898.0	2,175.0
North side of	Cs-134	-		35.6~147.0	64.4	161.2	46.4	40.4	38.3	37.0	41.6	55.0	50.1	55.7	33.1	42.7	38.4	59.7	30.0
the partition weir	Cs-137	_		437.1 ~ 5795.0	3,145.0	8,371.0	829.4	2,427.0	1,551.0	764.6	1,066.0	3,371.0	4,154.0	1,191.0	1,460.0	2,118.0	1,060.0	1,878.0	1,388.0
East side of scaffolding	Cs-134	_		40.2~166.1	58.6	31.3	55.3	37.8	87.1	34.1	40.7	49.1	74.8	58.6	48.2	63.2	40.0	42.8	42.2
for the heavy machinery	Cs-137	_		592.4~8303.0	630.9	178.7	3,446.0	1,694.0	1,148.0	891.0	1,884.0	1,020.0	1,654.0	1,606.0	955.9	1,392.0	1,332.0	1,447.0	1,710.0

XUnit: Bq/liter, Figures in gray were below the detection limit

1. Performance of the discharge (Management number*: 24-7-11)

2. Status of the dismantling of the J9 area tanks

3. Transfer of ALPS treated water in preparation for the future discharges

4. FY2025 ALPS treated water discharge plan

(Reference) Sea area monitoring history after the commencement of discharge

* The management number is made up of the fiscal year, followed by the discharge number for that fiscal year, and the total number of discharges to date. For example, "24-7-11" indicates that the data is for the seventh discharge of 2024, which is the eleventh discharge to date.

2. Status of dismantling of the J9 area tanks

- TEPCO
- > On February 13, 2025 the J9 area tanks were taken out of service and dismantling began on February 14, 2025.
- > Dismantling of the first tank was completed on March 4. And second tank was completed on March 14, 2025.

1. Performance of the discharge (Management number* : 24-7-11)

2. Status of the dismantling of the J9 area tanks

3. Transfer of ALPS treated water in preparation for the future discharges

4. FY2025 ALPS treated water discharge plan

(Reference) Sea area monitoring history after the commencement of discharge

* The management number is made up of the fiscal year, followed by the discharge number for that fiscal year, and the total number of discharges to date. For example, "24-7-11" indicates that the data is for the seventh discharge of 2024, which is the eleventh discharge to date.

3. Transfer of ALPS treated water in preparation for the future discharges **TEPCO**

Transfer of ALPS treated water from G4S area Group B and K3 area Group A/B to measurement/confirmation facility tank group A in preparation for the discharge of Management number: 25-1-12 was conducted (from January 6, 2025 to February 10, 2025). Circulation/agitation has been commenced since February 13, 2025 and a sample was taken on February 21, 2025. It is currently being analyzed.

Concept photo of leak countermeasures

1. Performance of the discharge (Management number*: 24-7-11)

2. Status of the dismantling of the J9 area tanks

3. Transfer of ALPS treated water in preparation for the future discharges

4. FY2025 ALPS treated water discharge plan

[Main points of the FY2025 ALPS treated water discharge plan]

- Number of annual discharges: 7 times
- Annual amount of water to be discharged: Approx. 54,600m³
- Annual amount of tritium to be discharged: Approx. 15 trillion Bq

(Reference) Sea area monitoring history after the commencement of discharge

* The management number is made up of the fiscal year, followed by the discharge number for that fiscal year, and the total number of discharges to date. For example, "24-7-11" indicates that the data is for the seventh discharge of 2024, which is the eleventh discharge to date.

4. Basic thinking behind the discharge plan

- As a general rule, we will start by discharging water with a low concentration of tritium.
- Based on this general rule, we will create a discharge plan for the following fiscal year at the end of each fiscal year and announce it. In addition to tritium concentrations, space needed for facilities required for decommissioning, and the need to secure enough relay tanks used for holding ALPS treated water after secondary treatment are also considered during the drafting of the discharge plan.

X Issues that will be considered when formulating the discharge plan

- Based on tritium concentration trends in the water generated daily, we will decide whether to prioritize the amount of water being generated daily or in storage when discharging water during the next fiscal year in order to reduce the annual amount of tritium to be discharged while ensuring that the concentration of radioactive substances, with the exception of tritium, meet regulatory standards (sum of the ratios of the concentration of each radionuclide to the regulatory concentration limit is less than 1).
- During the initial stage of discharge, we will discharge stored water that does not requires secondary treatment in order to keep the process smooth.
- The preparation of relay tanks and inspection/repairs required due to the deterioration over time of storage tanks on site is also considered.

4. Consideration when deliberating the FY2025 discharge plan

TEPCO

- As a general rule, water with low tritium concentration shall be discharged first as before. And when deliberating the ALPS treated water discharge plan, the following issues are taken into consideration.
 - 1 Estimates of the tritium concentrations in contaminated water (slide 31)
 - 2 The amount of contaminated water generated (slide 32)
 - 3 Site usage (slide 33)
 - 4 Other considerations (slide 35)
- Each condition is explained on the following pages

X The same goes for draining from pipes and equipment

4-1. Estimates of the tritium concentrations in contaminated water

TEPCO

- There was no significant increase in the concentration of tritium in contaminated water.
- However, the Nuclear Regulation Authority has requested that the water levels in the primary containment vessels (PCV) and suppression chambers (S/C) be lowered as quickly as possible in consideration of seismic resistance/safety.
- Tritium concentrations inside the PCVs are high (Unit 1: Approx. 20 million Bq/L; Approx. 4,800m³; Unit 3: Approx. 10 million Bq/L; Approxi. 6,600m³), and water drained from them to reduce water levels will be treated as stagnant water from inside the building, so we expect[%] to see fluctuations in the concentrations of tritium in the contaminated water generated during FY2025.
- Therefore, the FY2025 discharge plan calls for the ALPS treated water currently being stored that has relatively low concentrations of tritium and does not require secondary treatment to be discharged.

4-2. Amount of contaminated water generated (As of FY2023)

TEPCO

During FY2023, contaminated water was generated at a rate of approximately 80m³/day with approximately 60m³ of that water flowing into buildings on a daily basis. Approximately 10m³/day of contaminated groundwater from 2.5m above sea level (well points) was pumped up and approximately 10m³/day of contaminated water was transferred in conjunction with other decommissioning tasks.

The data for FY2024 is currently being compiled and is expected to show a decline in these numbers, but just to be safe we've assumed that the numbers will be the same as FY2023.

In conjunction with the decrease in the amount of contaminated water being generated, the amount of fresh water injected as reactor coolant is showing a downward trend, so the required amount of desalinated water will be secured by replenishing the desalination system with treated water to be re-purified that is currently being stored in tanks (approximately 20m³/day).

This will not result in an increase in the amount of ALPS treated water, etc., and will have no impact on the amount of water being stored in tanks in the long run.

4-3. Site usage

TEPCO

- In addition to area E (flanged tanks being dismantled) where facilities for retrieving fuel debris from Unit 2 will be constructed, we plan to construct facilities for the retrieval of fuel debris from Unit 3 in the J8 and J9 areas adjacent to area E.
- Dismantling of the tanks in the J9 area tanks will take place first before J8^{×1} as the tanks are emptied in conjunction with ocean discharge.
- The J8 and J9 tank area dismantling implementation plan was approved on February 3, 2025. On February 13, 2025, the water level meters on the J9 area tanks were removed, and storage functions were halted. Dismantling of the tanks in the J9 area began on February 14, 2025 (J9 area tank dismantling period: ~Around the end of FY2025^{%2})
- Prior to dismantling, the residual water inside the J9 area tanks will be treated and preparations, such as the removal of obstructions from the vicinity that do not interfere with tank storage functions, etc., will gradually be made.
- ※1 Since the J8 area tanks are being used to store treated water to be re-purified, dismantling will begin after the water inside them has been transferred to other tanks that have been emptied.
- *2 The J8 and J9 area tank dismantling will be the first time that welded tanks have been dismantled, so we will prioritize safety and move forward while checking procedures and accumulating knowledge.

[Reference] Areas of dismantled tank groups

4-4. Other considerations

Full inspection of measurement/confirmation tanks and cleaning of the bottoms

Full inspections of the tanks (including cleaning of the bottoms) have been planned for the maintenance/management of ALPS treated water discharge facilities, and the time required to do so has been allotted.

FY2024: Cleaning of the bottom of tank groups A~C and full inspection of tank Group B

FY2025: Full inspection of Group C

FY2026: Full inspection of tank Group A planned

Other storage tanks

- Tank areas that are prioritized for inspections and have fulfilled discharge requirements have been reflected in the plan and will be "drained to perform a visual inspection of the inside of the tanks" in succession.
- Tanks that have recently been difficult to drain have been subjected to an internal inspection using a submersible ROV ^{*} and will be subject to observe trend.
- X The video footage from the submersible ROV is clear and confirm the condition of paint and the extent of corrosion visible. If significant corrosion is discovered thickness measurements will be taken from the outside using ultrasonic thickness testing.
- Furthermore, as always all tanks will be subjected to visual inspection once a year and thickness measurements will be taken from the outside once a year for tanks subject to this inspection in accordance with the period of time they have been in service.
- Tanks in poor condition will be drained and sealant reapplied in order to ensure integrity.

Excerpt from the reference materials (Announced on January 30, 2025). Sections in red have been updated

ΤΞΡϹΟ

4-5. FY2025 ALPS-treated water discharge plan (1/2)

As of March 2025, the FY2025 discharge plan is as follows. There will be seven discharges during the year with each discharge releasing approximately 7,800m³ for an annual discharge of approximately 54,600m³. The annual tritium discharge volume will be approximately 15 trillion Bq.

Management number ^{%1}	Transfer source tank [*]	2	Amount of water 🕺 to be transferred	%3	Discharge commencement period
25-1-12	G4 south area Group E K3 area Group A/B ^{**s}	3(Transferred to Measurement/Confirmation facility Group A) (Transferred to Measurement/Confirmation facility Group A)	 <u>Approx. 8,080m³</u> <u>Approx. 910m³</u> 	Secondary treatment: None Sum of the ratios to regulatory concentrations: 0.45~0.55 ^{%6} Tritium concentration: 220,000~370,000Bq/liter ^{%7} Total tritium volume: 2.8 trillion Bq	April
25-2-13	K3 area Groups A/B ^{#s} J1 area Group E	(Transferred to Measurement/Confirmation facility Group C): (Transferred to Measurement/Confirmation facility Group C):	Approx.7,000m ³ Approx. 800m ³	Secondary treatment: None Sum of the ratios to regulatory concentrations: 0.45~0.62 ^{%6} Tritium concentration: 220,000~380,000Bq/liter ^{%7} Total tritium volume: 1.9 trillion Bq	June~July
25-3-14	J1 area Group E G5 area Group E	(Transferred to Measurement/Confirmation facility Group A) (Transferred to Measurement/Confirmation facility Group A)	: Approx. 7,300m ³ : Approx. 500m ³	Secondary treatment: None Sum of the ratios to regulatory concentrations: 0.47~0.62 ^{%6} Tritium concentration: 200,000~380,000Bq/liter ^{%7} Total tritium volume: 2.9 trillion Bq	July~August
25-4-15	G5 area Groups E/C/B	(Transferred to Measurement/Confirmation facility Group B)	₩4 Approx. 9,000m ³	Secondary treatment: None Sum of the ratios to regulatory concentrations: 0.47~0.62 ^{%6} Tritium concentration: 200,000~220,000Bq/liter ^{%7} Total tritium volume: 1.6 trillion Bq	September

Continues on next slide

- X1 The management number is made up of the fiscal year, followed by the discharge number for that fiscal year, and the total number of discharges to date.
- For example, "25-1-12" indicates that the data is for the first discharge of FY2025, which is the twelfth discharge to date.
- 2 The tank order from which water will be transferred will not be impacted by increases/decreases in the transfer volume (factual measurements). But order of discharge may be moved forward or backward.

%3 Underlined parts indicate actual values.

- X4 Since there will be no water remaining in the receiving tanks (Measurement/Confirmation tank groups A/B) after the tank inspections, the amount of water to be transferred will total approximately 9,000m³ (discharge volume is approximately 7,800m³).
- 35 K3 area Group A/B tanks emptied as a result of transfer/discharge during FY2023 and FY2024 will be reused to receive ALPS treated water.
- %6 Conservative values calculated from the analytical values of the seven major nuclides (Cs-134, Cs-137, Sr-90, I-129, Co-60, Sb-125, Ru-106) measured after ALPS treatment and storage in tanks, plus the maximum value of C-14 (0.11) and an estimate of the total of other nuclides at 0.3.
 %7 Tank group average, estimated taking into consideration decay as of April 1, 2025.

Excerpt from the reference materials (Announced on January 30, 2025). Sections in red have been updated

4-5. FY2025 ALPS-treated water discharge plan (2/2)

Management numbe	er ^{%1} Transferred tank ^{%2}	Continued from	n previous slide Amount transferred		Discharge commencement period
25-5-16	G5 area group A/B(Transferred to measuren	nent/confirmation facility Group C)	: Approx. 7,800m ³	Secondary treatment: None Sum of the ratios to regulatory concentrations: 0.47~0.59 ³³ Tritium concentration: 220,000~260,000Bq/liter ³⁴ Total tritium volume: 1.9 trillion Bq	Oct~Nov
25-6-17	G5 area group A/D(Transferred to measuren G4 north area group A/B(Transferred to mea	nent/confirmation facility Group A) Isurement/confirmation facility Group A)	: Approx. 4,000m ³ : Approx. 3,800 m ³	Secondary treatment: None Sum of the ratios to regulatory concentrations: 0.46~0.76 ^{%3} Tritium concentration: 260,000~300,000Bq/liter ^{%4} Total tritium volume: 2.2 trillion Bq	Nov~Dec

Inspection suspension (including full inspections of measurement/confirmation facility Group C tanks)

25-7-18	G4 north area group A/B(Transferred to measurement/confirmation facility Group B) H2 area group J (Transferred to measurement/confirmation facility Group B)	: Approx. 3,700m ³ : Approx. 4,100 m ³	Secondary treatment: None Sum of the ratios to regulatory concentrations: 0.58~0.78 ^{×3} Tritium concentration: 260,000~270,000Bq/liter ^{×4} Total tritium volume: 2.0 trillion Bq	Mar

FY2025 total tritium discharge volume: Approx. 15trillion Bq

%1 The management number is made up of the fiscal year, followed by the discharge number for that fiscal year, and the total number of discharges to date. For example, "25-1-12" indicates that the data is for the first discharge of 2025, which is the twelfth discharge to date.

2 Whereas the order of the tanks from which water will be transferred will not change due to increases or decreases in the amount of water transferred (actual measurements), the discharge number may be moved up or back.

3 Conservative values calculated from the analytical values of the seven major nuclides (Cs-134, Cs-137, Sr-90, I-129, Co-60, Sb-125, Ru-106) measured after ALPS treatment and storage in tanks, plus the maximum value of C-14 (0.11) and an estimate of the total of other nuclides at 0.3..

%4 Tank group average, estimated taking into consideration decay as of April 1, 2025

TEPCO

- Water will be transferred/discharged as planned in accordance with the FY2024 discharge plan.
- K3 area Groups A/B
 - The tanks in the vicinity of Multi-nuclide removal equipment (ALPS) will be discharged as planned so that the space can be effectively utilized in the long period.
 - Of these tanks in the vicinity, water in the tanks in the K3 tank area shall be transferred/discharged and inspections will be conducted to ensure that it can be used for a long period.
- J1 area Group E
 - As a horizontal development of the K4-E side plate corrosion, we plan to conduct sequential internal inspections of the storage tanks.

Internal inspections will be implemented in the form of visual inspections of drained tanks, however if the tank cannot be drained due to a lack of empty tanks to transfer the water, a submersible ROV will be used to perform the inspection.

• The J1 area tanks are old and the internal inspection priority is relatively high, however with the exception of tank J1-E, secondary treatment is necessary.

Therefore, the water in J1-E will be transferred/discharged as soon as possible to perform an inspection. After that, inspections will be conducted by transferring stored water from other tanks in the J1 area in turn, starting from this tank.

- G5 area Groups A~E, G4 north area Groups A/B, H2 area Group J
 - Transfer/discharge will be starting with the tank areas with the lowest tritium concentrations.

TEPCO

[Reference] Inspections of welded tanks used to store ALPS treated water, etc. **TEPCO**

- Welded tanks are designed to have a service life of 20 years as a result of wall thickness specifications that consider sealant specifications/corrosion, but efforts are made to detect abnormalities early by regularly implementing external and internal inspections before the end of this 20 year service period (refer to the chart below), and repairs suitably implemented to maintain integrity over the long-term.
- X Some tanks have been manufactured with a service life of five years (G3, H8, and J1 areas put into service early in 2013) by regular inspections/repairs/sealant reapplication have been implemented to confirm that there is no problem with continued use.

Inspection Type		Liquid in tanks	Target		Frequency	Inspection details		
Annual inspection	①Visual inspection	Implemented regardless of whether or not	All tanks		Once a year	Outer surface: Checked for deformation, cracks, paint peeling, corrosion, and leaks <u>Target areas</u> Sidewalls, nozzles, bolts/nuts, caulking to prevent rain from seeping into the bottom plate, ancillary facilities (vertical ladders, etc.)		
	②Sidewall thickness measurements taken from the outside (ultrasonic flaw detection)	there is liquid in the tanks	 Membra Less thar Thicknes Less thar Service li More that 	ne thickness: n 100µm s allowance: n 1mm ife: an 10 years	Once a year	Sidewalls: Checked to confirm that there is no abnormal thinning		
Full inspection	③Internal inspection (after draining water) (ultrasonic flaw detection)	No	All tanks	Tanks that have been emptied through the discharge of ALPS- treated water, etc.	Once every 10 years	Sidewalls: Paint blistering, peeling, base material thinning Bottom plate: Same as above (Internal paint membrane thickness measurements, wall thickness measurements)		
	Underwater internal inspection (submersible ROV)	Yes		Tanks that cannot be drained		Sidewalls: Paint blistering, peeling, base material corrosion Bottom plate: Same as above		

* These current plans may be revised in the future. If revisions are made, they will be announced when the finalized discharge plan is announced.

TEPCO

Approx. 1,000 welded tanks will be drained and subjected to internal inspections or submersible ROV inspections if required.

		FY2024		FY2	025	FY20	026	FY2027 and onward	
		1 st Half	2 nd Half	1 st Half	2 nd Half	1 st Half	2 nd Half		
① External inspections (visual inspections)		All	All tanks		anks	All tanks		All tanks/year	
 ② Sidewall thickness measurements taken from the outside (ultrasonic flaw detection) 		Approx	. 540 tanks	Approx.	710 tanks	Approx. 820 tanks		Implemented for all tanks that have been in service for more than 10 years	
	Measurement/ confirmation tanks		К4-В	10 tanks	K4-C	10 tanks	In addition be emptied	to these plans, the tank areas that will during the FY2025 discharge (G5, G4	
	J4-L	3 tank	S				North) and for FY2026 subjected t	in accordance with the discharge plans and onward will be successively o internal inspections	
 ③ Internal inspection (after draining 	H1-G		8 tanks						
water) (ultrasonic flaw detection)	G4 south-A/B/C		G4 south-C	3 tanks	G4 sout	h-A/B 18 tank	s		
	КЗ-А/В		1	2 tanks					
	J1-E			8 tanks 📕					
④Underwater internal inspection (submersible ROV)			5 tanks	Approx.	100 tanks	Approx.	100 tanks	Approx. 100 tanks/year	

1. Performance of the discharge (Management number* : 24-7-11)

2. Status of the dismantling of the J9 area tanks

3. Transfer of ALPS treated water in preparation for the future discharges

4. FY2025 ALPS treated water discharge plan

(Reference) Sea area monitoring history after the commencement of discharge

* The management number is made up of the fiscal year, followed by the discharge number for that fiscal year, and the total number of discharges to date. For example, "24-7-11" indicates that the data is for the seventh discharge of 2024, which is the eleventh discharge to date.

within 3km of the power station

within a 10km square in front of the power station

[Reference] Sea area monitoring plan

for obtaining quick measurements of the concentration of tritium in seawater

O We have engaged in monitoring to obtain quick measurements of the concentration of tritium in seawater with targeting the upper detection limit for 10Bq/liter, and index to determine discharge suspension (the discharge suspension level) was set.

%1 If bad weather during the discharge period prevents measurements for being taken for two consecutive days, on the following day (third day) if it is again expected that measurements cannot be taken, measured results will be quickly obtained from T-1 and T-2

%2 We have engaged in monitoring daily since the commencement of discharge in August 2023, but the monitoring plan was changed on December 26, 2023 in light of actual measurements taken during discharge (<u>Announced on December 25, 2023</u>)