Document 1-1, the 12th Review Meeting on the Implementation Plan Regarding the Handling of ALPS Treated Water

Installation of New ALPS Treated Water Dilution/ Discharge Facilities and Related Facilities

March 10, 2022

Tokyo Electric Power Company Holdings, Inc.

The Japanese version shall prevail.

<u>Responses to issues pointed out^{*} at the review meeting, etc.</u>

*: Documents 2-2, Attachment 2 for (the 97th) Specified Nuclear Facility Monitoring and Assessment Review Meeting

- (2-1 Major issues to be reviewed based on the Nuclear Reactor Regulation Act)
- (1) Discharge Facilities of ALPS Treated Water into the Sea
 - [3] Methods of seawater intake and discharging ALPS treated water after dilution (including measures to prevent the transfer of radioactive materials within the port into water intake)
 - [5] Structure and strength of equipment, protection against natural phenomena such as earthquakes and tsunamis, prevention of misoperation, reliability, etc.
 - [6] Validity assessment of the facility design in the event of failure
- (2) Safety measures at the time of discharge into the sea
 - [1] Analysis methods and systems for the radioactive concentration of nuclides in ALPS treated water

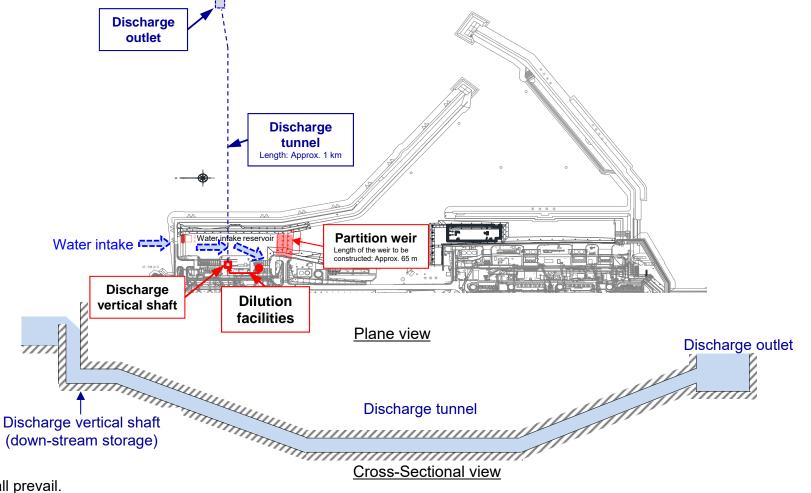
Responses to issues pointed out* at the review meeting, etc.

*: Documents 2-2, Attachment 2 for (the 97th) Specified Nuclear Facility Monitoring and Assessment Review Meeting

Issues pointed out [1]

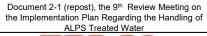
(2-1 Major issues to be reviewed based on the Nuclear Reactor Regulation Act)

(1) Discharge Facilities of ALPS Treated Water into the Sea

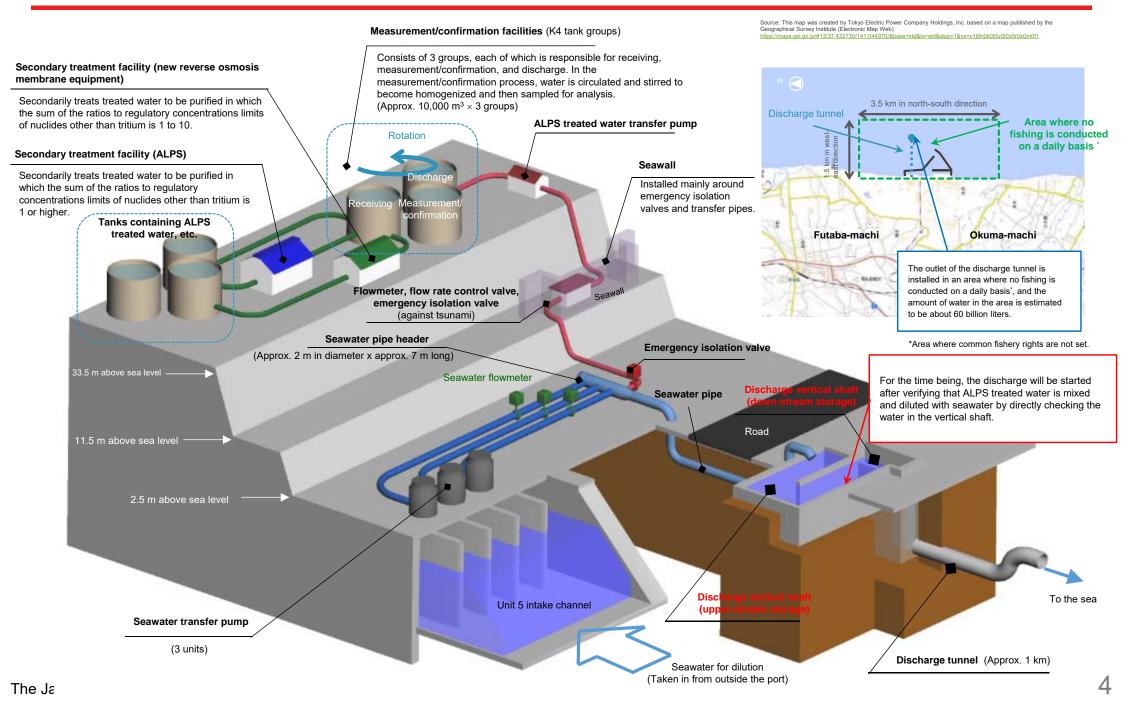

[3] Methods of seawater intake and discharging ALPS treated water after dilution

(including measures to prevent the transfer of radioactive materials within the port into water intake)

 Regarding construction requiring undersea work, including installation work of a partition weir and a discharge outlet caisson, an explanation should be given on measures to suppress swirl-up of seabed soil and its monitoring during the construction period, response if there are significant changes in the monitoring, and the effects in the event of actual swirl-up of seabed soil.

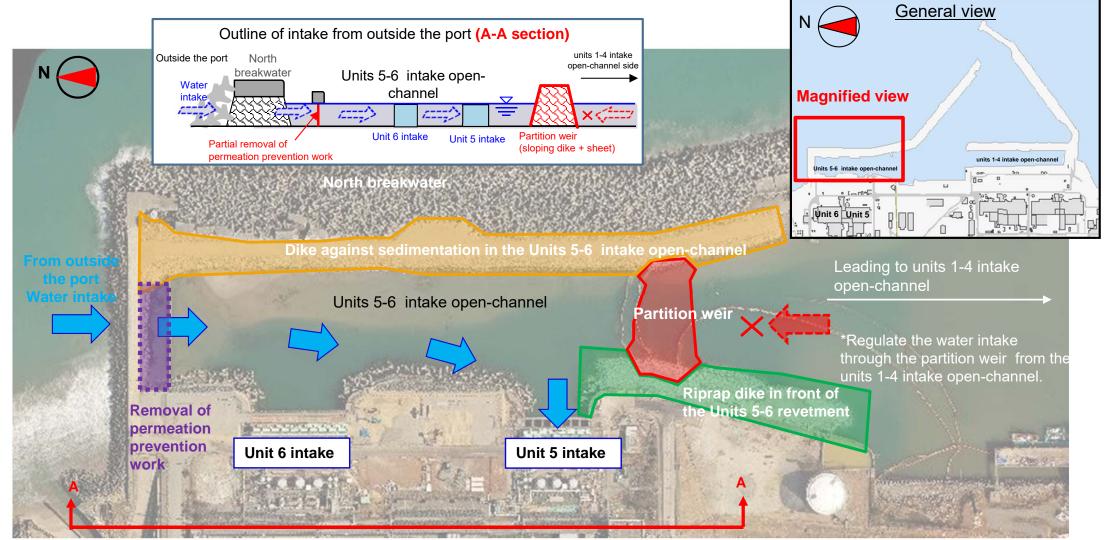

Document 2-1 (repost), the 9th Review Meeting on the Implementation Plan Regarding the Handling of ALPS Treated Water

- Intake and Discharge facility
- Regarding the design of intake facilities, a Units 5-6 intake open-channel will be separated with a partition weir (riprap sloping weir + sheet) from the units 1-4 side port side, and a part of the north breakwater permeation prevention work will be remolded so that the seawater for dilution is taken in from outside the port.
- Discharge facility is designed so that they can transfer water flowing out over the partition wall in the discharge vertical shaft to the outlet, which is approximately 1 km away, by making use of the head between water in the discharge vertical shaft (down-stream storage) and the sea surface. In addition, friction loss in the Discharge facility and increase in water level are taken into account when designing.



The Japanese version shall prevail.

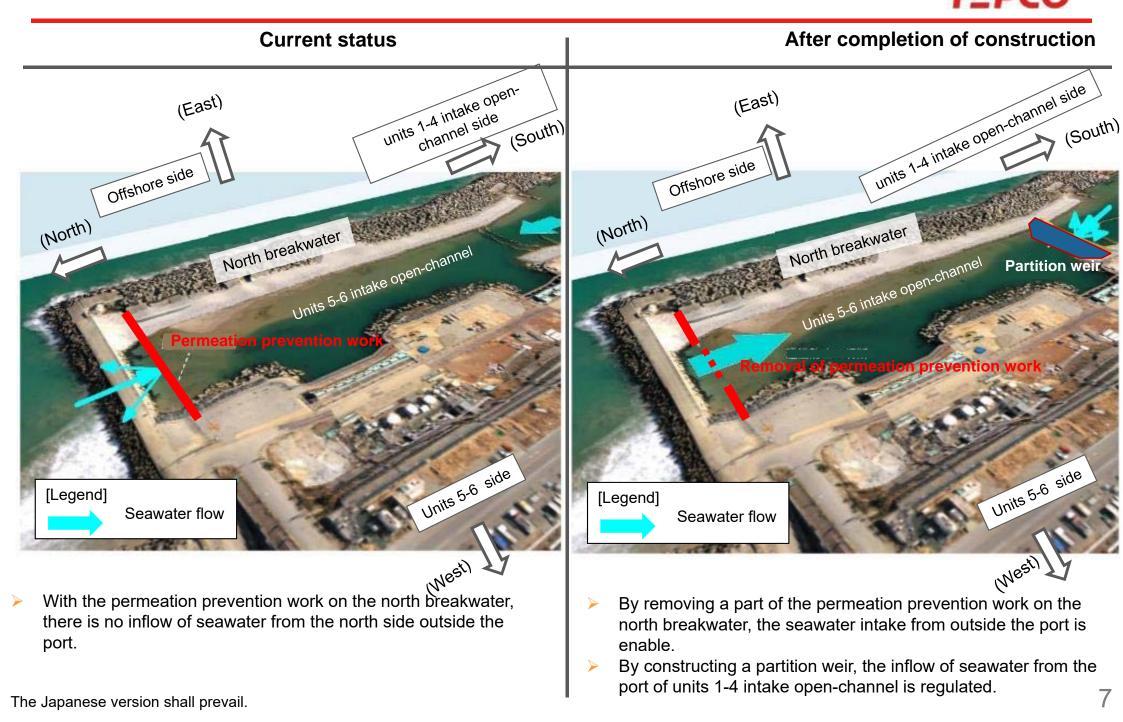
2-1(1) [3] Methods of seawater intake and discharging ALPS treated water after dilution [1]-2. Facility overview for ensuring safety


Methods of seawater intake and discharging ALPS treated water after dilution

Water intake methods: construction methods

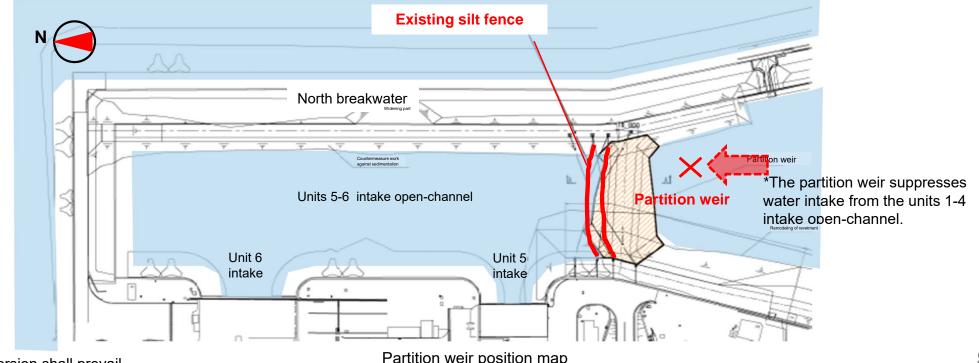
Discharge methods: construction methods

5.1 Enhanced monitoring associated with offshore construction work


- Units 5-6 intake open-channel are shut with a partition weir (riprap sloping weir + sheet) from the units 1-4 side port. A part of the north breakwater permeation prevention work is remodeled so that the seawater for dilution is taken in from Discharge Facilities of ALPS Treated Water into the Sea.
- Separation from the port of units 1 -4 side and taking seawater from outside of the port, the seawater intake from within the port, in which relatively higher radioactivity concentration, can be suppressed.

The Japanese version shall prevail.

2-1(1) [3] Methods of seawater intake and discharging ALPS treated water after dilution [Supplement] Outline of the seawater intake method



Current status

- As for the concentration of radioactive materials in the seawater within the port, concentration within units 1-4 intake open-channel is relatively high.
- Regarding the concentration of radioactive materials in seabed soil within the port, concentration on the Units 5-6 side is equivalent to \succ outside the port. Still, concentration on units 1-4 side is relatively high.

Positioning

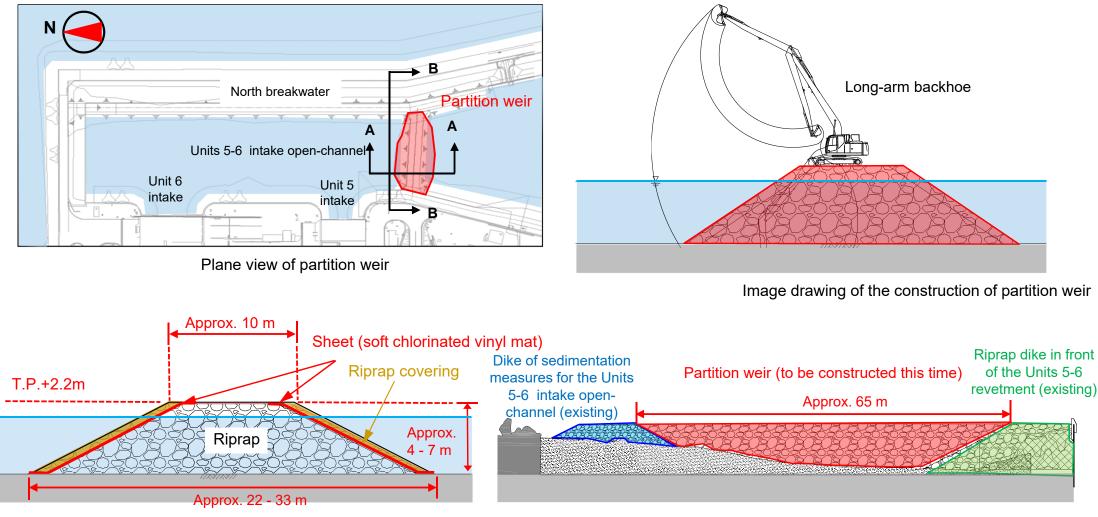
- In the future, if we continuously take seawater for dilution from unit 5 intake, it is assumed that there will be effects of the seawater and seabed soil on the units 1-4 side with a relatively high concentration of radioactive materials. Therefore, there is a risk of increasing the concentration of radioactive materials in the seawater for dilution.
- For this reason, we will suppress the intake from units 1-4 intake open-channel by building the partition weir.

The Japanese version shall prevail.

Before constructing the partition weir

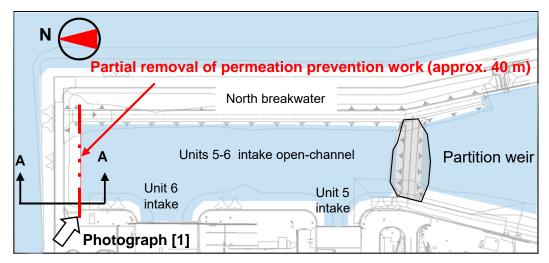
- > Units 5-6 intake open-channel and the units 1-4 intake open-channel are separated by two silt fences (two locations).
- Since the silt fences and rope are damaged (wear) due to the influence of the tides and waves by tidal levels, they are replaced every two to three years in addition to periodic maintenance (Performed recently in February 2016, February 2018, and March 2021).
- Due to the impact of tides and waves by tidal levels, the silt fences cannot entirely suppress the drawing in of the seawater with a high concentration of radioactive materials.

After constructing the partition weir

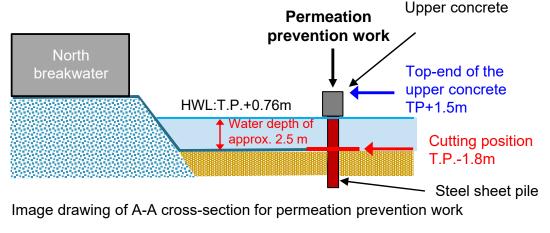

- Installation of sheets on both sides of the partition weir will improve the function and stability as a facility to suppress the intake from the units 1-4 intake open-channel side, compared to the existing silt fences.
- To confirm the suppression effect of the partition weir, after the construction of the partition weir, we will sample the seawater on the Units 5-6 intake open-channel (north) and units 1-4 intake open-channel (south) of the partition weir and compare the concentration of radioactive materials.
- > After implementing periodic inspections based on the long-term inspection plan, we will conduct repairs and modifications as necessary.

Document 2-1 (repost), the 9th Review Meeting on

the Implementation Plan Regarding the Handling of


Document 2-1 (some parts revised), the 9th Review Meeting on the Implementation Plan Regarding the Handling of ALPS Treated Water

- > The structural section of the partition weir is shown below:
- The height of the top-end of the partition weir is T.P.+2.2 m, which is higher than the condition of HHWL (the highest sea level in the past: T.P. + 1.15 m), and the inflow of seawater from the units 1-4 side can be avoidable.


The Japanese version shall prevair oss-sectional view

- A part of the permeation prevention work (partition wall) located inside the north breakwater (south side) is cut and removed, and seawater for dilution is taken in from outside the port.
- > The removed permeation prevention work (concrete and steel sheet pile) is stored as solid waste within the plant site.

Plane view of the partial removal of permeation prevention work

* In the period between after the construction of the partition weir to the partial removal of the permeation prevention work, there will be almost no supply of seawater from units 1-4 intake open-channel side. However, seawater will be supplied from the side of the north breakwater. Accordingly, there will be no impact on the intake of emergency cooling water (approx. 1.3 m³/s) for units 5 and 6.

Document 2-1 (some parts revised), the 9th Review

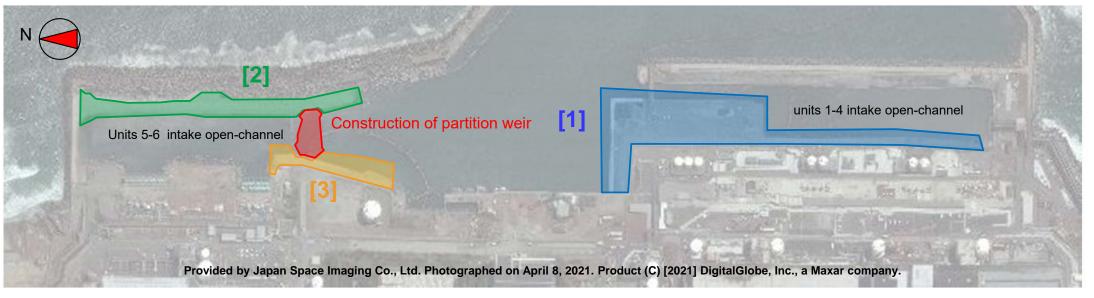
Meeting on the Implementation Plan Regarding the

Outline of removal of permeation prevention work

2-1(1) [3] Methods of seawater intake and discharging ALPS treated water after dilution [1]-3.5 Water intake methods: radioactive material concentration in seawater during the construction of the partition weir (1/3)

- In the last three years, we have experienced pouring materials such as riprap into the sea by using work ships and backhoes within the port.
- During the construction work, we installed the construction fence to prevent contamination, slowed down the work speed, and carefully carried out the work to suppress* the swirling and spread of the seabed earth and sand.
- > There was no significant change in the results of monitoring the concentration of radioactive materials in seawater during construction.
- > Regarding the construction this time, the method seems no concern and we have determined taking the same method.

*Suppressing the inflow into the Units 5-6 intake and the spread outside the port.

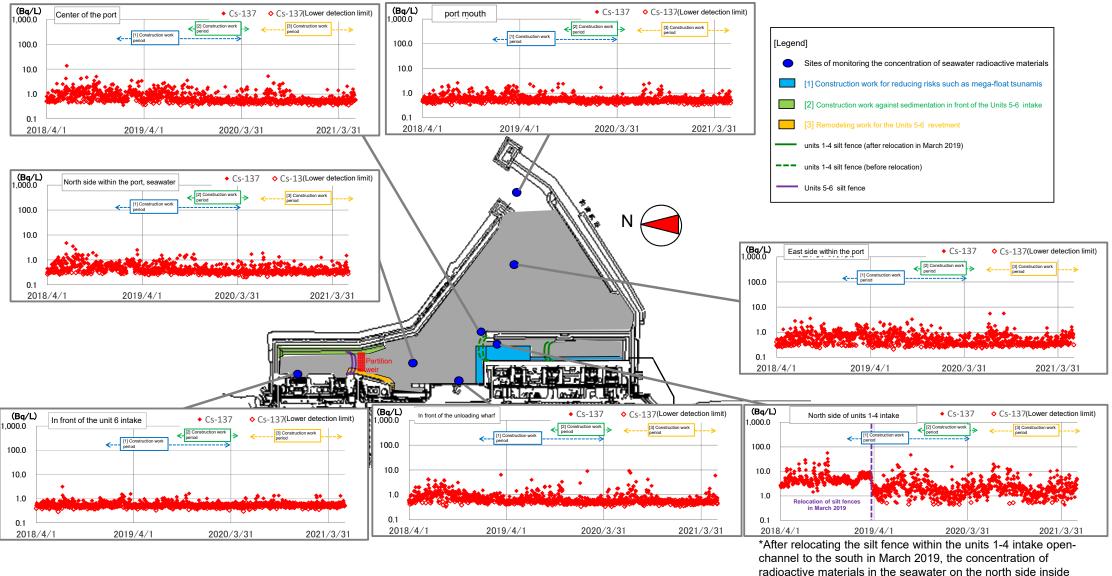

[Construction project name]

- [1] Construction for reducing risks such as mega-float tsunami
- [2] Construction against sedimentation in front of the Units 5-6 intake

Document 2-1 (some parts revised), the 9th Review

Meeting on the Implementation Plan Regarding the

[3] Remodeling work for the Units 5-6 revetment



Construction location map

2-1(1) [3] Methods of seawater intake and discharging ALPS treated water after dilution

[1]-3.5 Water intake methods: radioactive material concentration in seawater during the construction of the partition weir (2/3)

- The following shows the results of monitoring on the concentration of seawater radioactive materials (Cs-137) during the construction works within the port in the past three years:
- No significant effects of the construction work found within the port.

The Japanese version shall prevail. Concentration of seawater radioactive materials during the construction within the port

the units 1-4 intake decreased.

Document 2-1 (repost), the 9th Review Meeting on the Implementation Plan Regarding the Handling of ALPS Treated Water

TEPCO

2-1(1) [3] Methods of seawater intake and discharging ALPS treated water after dilution [1]-3.5 Water intake methods: radioactive material concentration in seawater during the construction of the partition weir (3/3)

- Building the partition weir may cause swirl-up of the seabed for pouring riprap into the sea, silt fences will be placed to prevent underwater pollution.
- > Below shows the positions of underwater pollution prevention fence in Units 5-6 intake open-channel construction work.

The Japanese version shall prevail.

Methods of seawater intake and discharging ALPS treated water after dilution

Water intake methods: construction methods

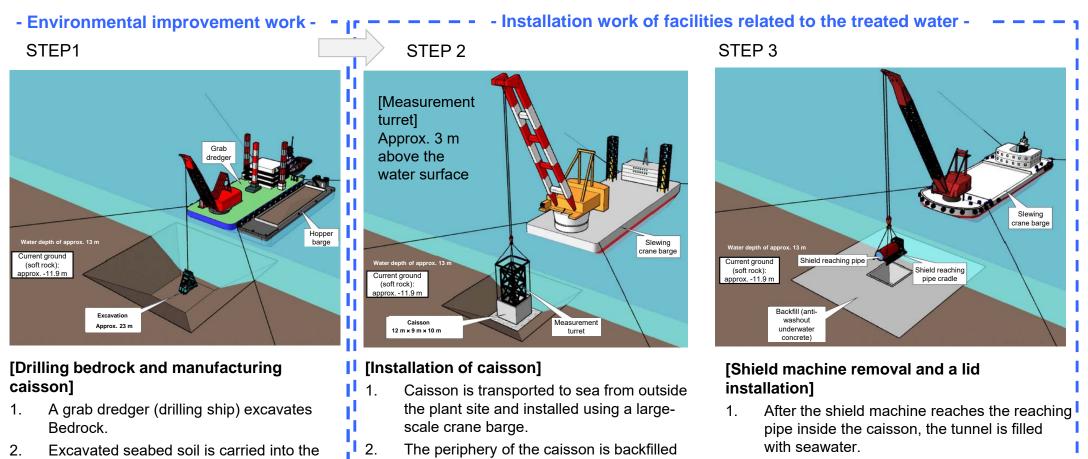
Discharge methods: construction methods

Enhanced monitoring associated with offshore construction work

2-1(1) [3] Methods of seawater intake and discharging ALPS treated water after dilution [1]-4.1 Discharge methods: plane view of offshore construction work

................ <Plane view of offshore construction work> > Construction work for the discharge outlet is carried out within the range surrounded by a blue broken line at the sea. > Considering the mooring range of the working vessel, the construction **Discharge** area is arranged indicated by white broken line, which allows navigation outlet safety of public. * Locations of sinker blocks and the construction area may change due to coordination with the relevant authorities. ---------Setting the construction area [Legend] 1.0 km Discharge Lighted buoy (including sinker block) tunnel Approx. Sinker block for mooring vessels COLUMN 1000 Partition Removal of permeation weir Provided by Japan Space Imaging Co., Ltd. Photographed on April 8, 2021. prevention work Product(C)[2021] DigitalGlobe, Inc., a Maxar company. (partial removal) The Japanese version

2-1(1) [3] Methods of seawater intake and discharging ALPS treated water after dilution


[1]-4.2 Discharge methods: construction work flow (1/2)

Within the plant site **Outside the plant site*** Off the coast of the plant (construction on land) (offshore construction) **★**In progress *Location to be determined. improvement work **Environmental improvement** - Environmental **Environmental improvement** construction (on land) construction (at sea) Installation of earth retaining Placement of lighted buoys Manufacturing of lighted and excavation (clarification of construction area) buoys and sinker blocks for mooring vessels Seabed drilling and feeding foundation riprap Manufacturing of discharge outlet caisson and lid **Discharge vertical shaft** Within the port of the plant construction Installation of discharge Installation work of facilities related to (offshore construction) outlet caisson **Construction of Discharge tunnel work** partition weir **Backfilling of discharge** the treated water outlet caisson **Removal of permeation** prevention work **Removal of measurement** turret and shield machine Installation of discharge outlet caisson lid **Completion of offshore construction** 17 The Japanes

TEPCO

2-1(1) [3] Methods of seawater intake and discharging ALPS treated water after dilution [1]-4.2 Discharge methods: construction flow (2/2)

- > A grab dredger (drilling ship) excavates the discharge tunnel outlet.
- > On the seabed drilled, the discharge outlet caisson made of reinforced concrete will be installed using a large-scale crane barge.
- > The shield machine excavating the discharge tunnel will be removed from the discharge outlet caisson with a large floating crane.

For the reaching of the shield machine, a

steel measurement turret connected with

the caisson manages information about the

with concrete or the like.

location of the caisson.

3.

2. Separating the reaching pipe from the caisson, the shield machine (reaching pipe) is removed using the crane barge.

TEPCO

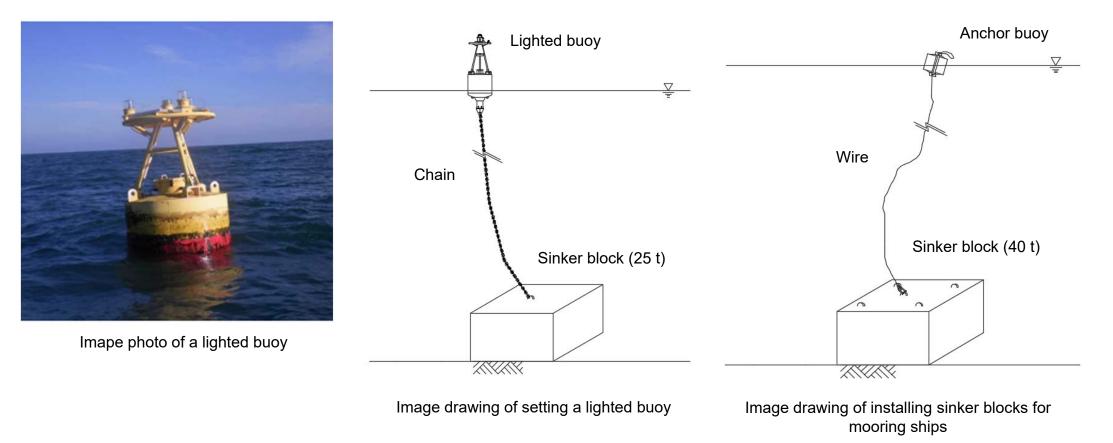
3. The caisson lid is installed in the end.

*Location to be determined.

The Japaneses versions had prevail change due to future studies.

While excavating the bedrock, the caisson

is manufactured outside the plant site.*


plant site.

3.

18

2-1(1) [3] Methods of seawater intake and discharging ALPS treated water after dilution [1]-4.3 Installation of lighted buoys and sinker blocks

- To set the construction area at sea, the crane barge places four lighted buoys and four sinker blocks (25 tons each) for mooring the flighted buoys.
- For mooring ships for construction, four sinker blocks (110 tons each) are placed outside the port and three sinker blocks (25 tons, and 40 tons) within the port using the crane barge.

- Sinker blocks are manufactured outside the plant site (*) and loaded onto the crane barge.

*Location to be determined.

2-1(1) [3] Methods of seawater intake and discharging ALPS treated water after dilution [1]-4.4 Drilling at sea

- > The grab dredger excavates the seabed surface to install the discharge outlet caisson.
- The seabed soil excavated is transported to the unloading wharf within the port of the plant by the hopper barge. Backhoes unload the earth and sand and carry them to a disposal area within site.

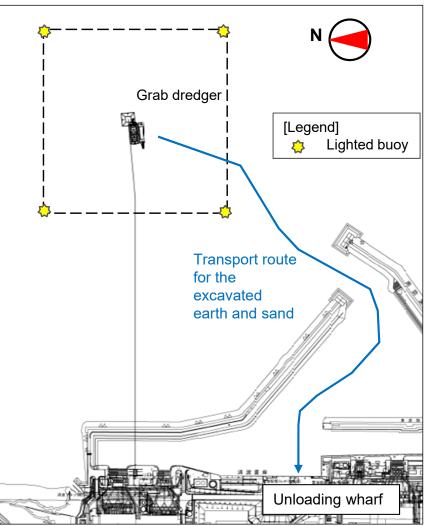


Image drawing of drilling at sea with grab dredger (plane view) The Japanese version shall prevail.

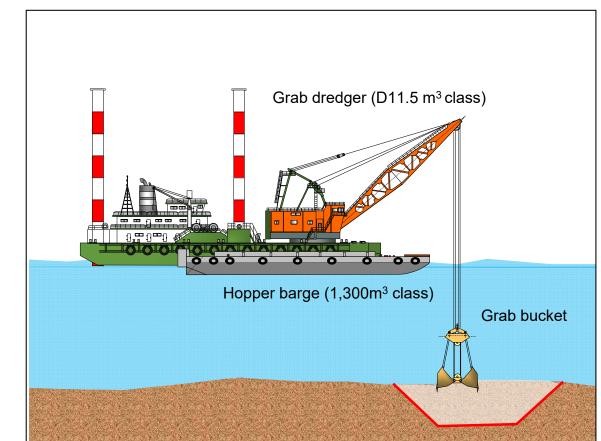


Image drawing of drilling at sea with grab dredger (sectional view)

2-1(1) [3] Methods of seawater intake and discharging ALPS treated water after dilution [1]-4.5 Manufacturing of caisson

21

 \triangleright Discharge outlet caisson will be manufactured outside the plant site^(*).

*Location to be determined.

A measurement turret to control the location information for tunnel drilling and the reaching pipe to which the shield machine reaches will be installed inside the caisson in advance.

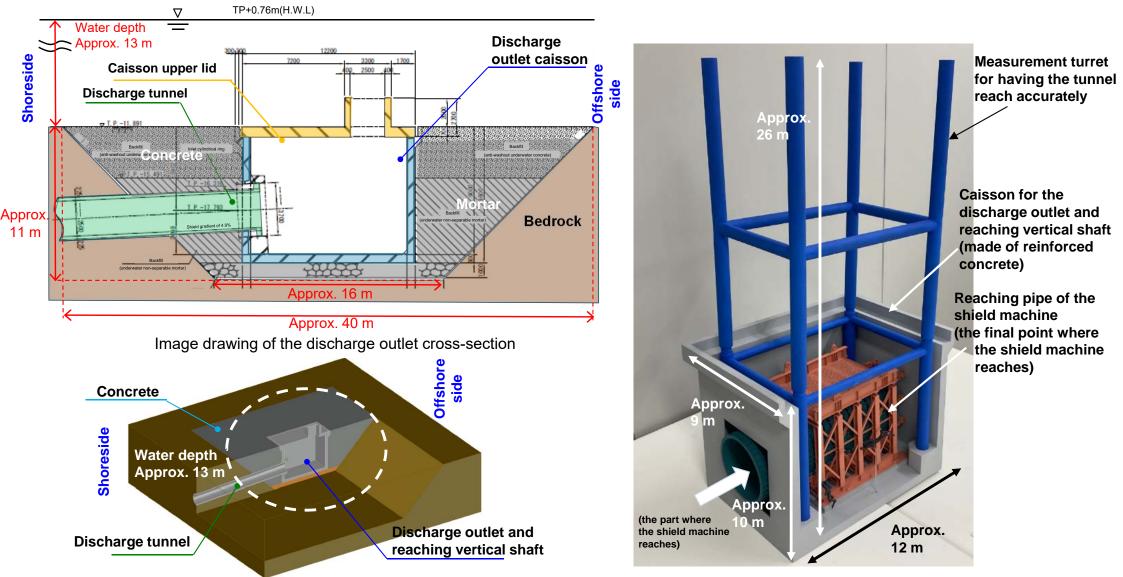



Image drawing of discharge outlet

A large-scale crane barge installs a discharge outlet caisson.

The crane barge loads the discharge outlet caisson manufactured outside the plant site* and delivers it to the installation location off the coast of the plant.

2-1(1) [3] Methods of seawater intake and discharging ALPS treated water after dilution [1] -4.6 Installation of discharge outlet caisson (2/2)

- Sinker blocks (110 tons each) and anchors, which is placed in advance, fix a large-scaled crane barge using mooring wires. The crane barge moves to the installation location operating mooring wires of the crane barge winch by supplying and rewinding the wires and installs the discharge outlet.
- The crane barge is guided to the installation location by GPS installed on the crane barge and at the measurement turret installed at the caisson measuring from the land side.

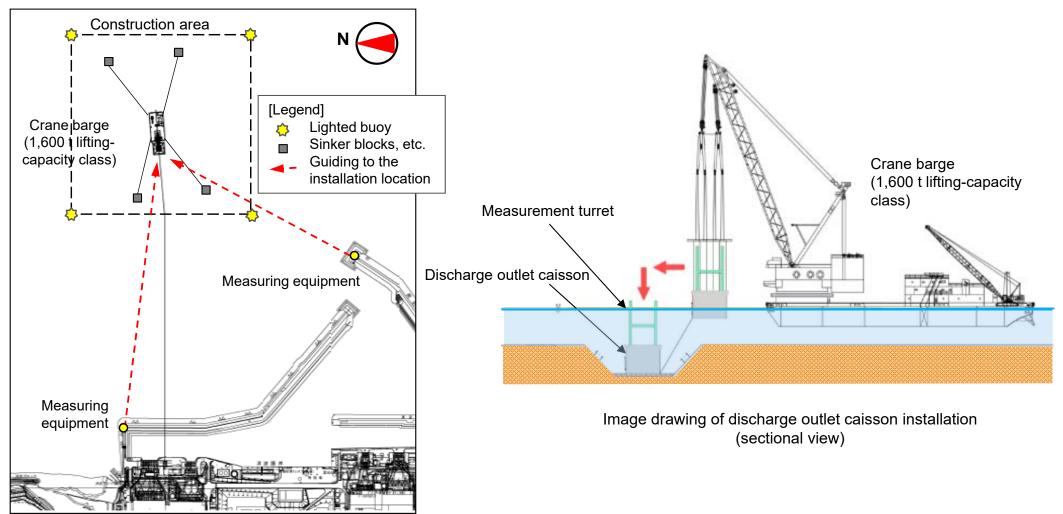


Image drawing of discharge outlet caisson installation The Japanese version shall prevail view) τΞρςο

2-1(1) [3] Methods of seawater intake and discharging ALPS treated water after dilution [1] -4.7 Backfill of discharge outlet caisson

- Around the discharge outlet caisson, underwater non-separable concrete or underwater non-separable mortar will be poured into from a concrete plant vessel for backfill.
- The area from the bottom surface to the part where the shield machine passes through, underwater non-separable mortar will be poured into while underwater non-separable concrete will be poured into the remaining space.

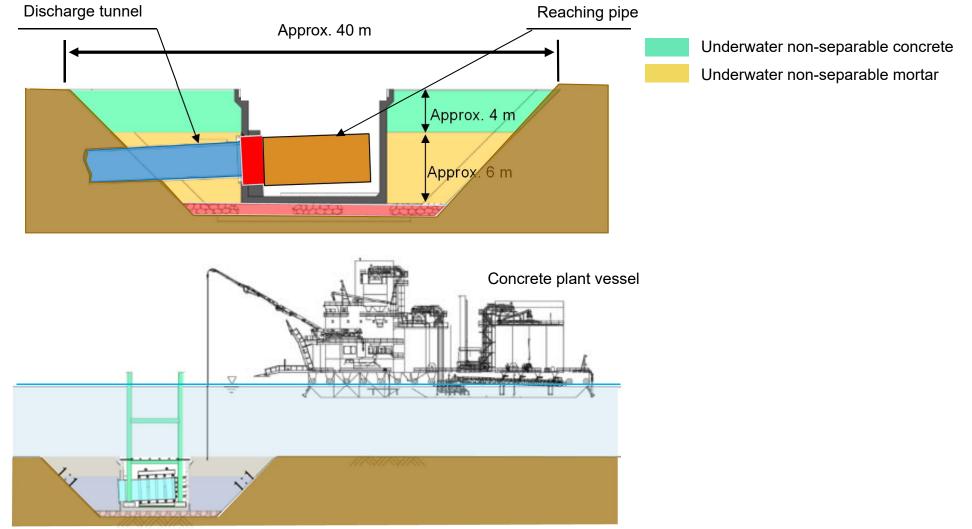


Image drawing of the backfill cross-section

TEPCO

- After the shield machine reaches the inside of the reaching pipe of the inner caisson, the measurement turret will be removed using the crane barge.
- After removing the measurement turret, a water injection valve at the reaching pipe will be operated to inject seawater inside the tunnel*.
- After checking that the inside the tunnel is filled with seawater, the reaching pipe will be separated from the connection of the discharge outlet caisson*.
- The crane barge will remove the reaching pipe.

*Regarding the construction work of the connection between the discharge outlet caisson and the discharge tunnel is explaned separately.

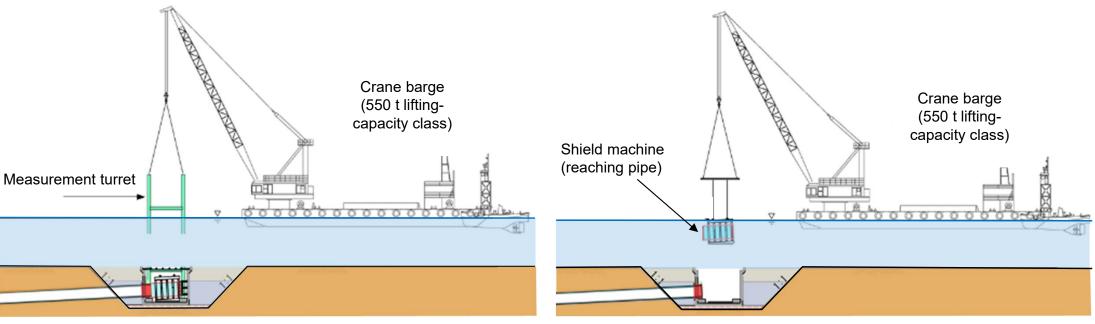


Image drawing of measurement turret removal

Image drawing of shield machine (reaching pipe) removal

TEPCO

A discharge outlet lid will be manufactured outside the plant site.*

*Location to be determined.

The manufactured lid will be loaded onto the crane barge. Then, it will be transported by sea to the installation location off the coast of the plant site and installed at the top-end of the discharge outlet caisson.

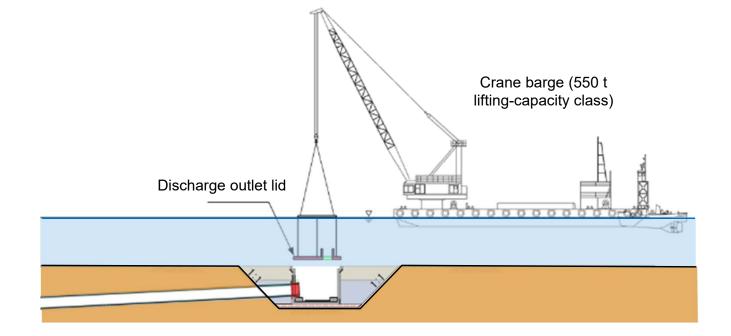
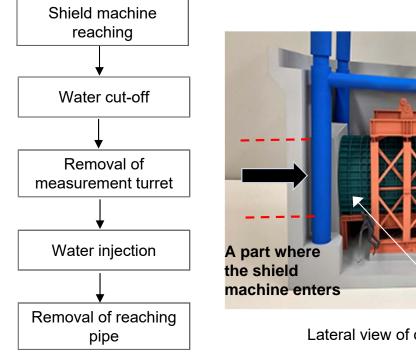
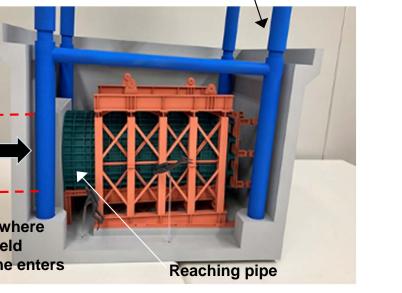
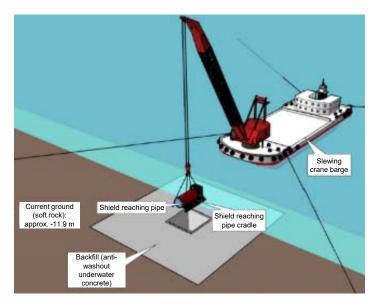



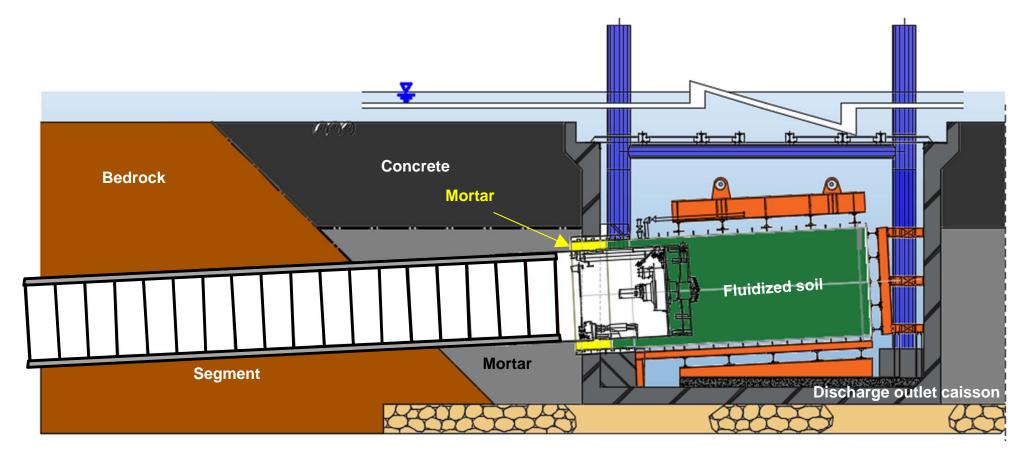
Image drawing of discharge outlet caisson lid installation


- The shield machine will tunnel its way to the reaching pipe installed beforehand inside the discharge outlet caisson and will be connected to the discharge outlet caisson. After that, water will be cut off to prevent water leakage from the surroundings of the tunnel, then remove the equipment and materials inside the tunnel from the starting shaft* on the land side.
- After removing the measurement turret integrated with the discharge outlet caisson, water will be injected inside the tunnel, so that the discharge tunnel will be filled with seawater.
- The reaching pipe that houses the shield machine will be separated from the discharge outlet caisson and be removed using the crane barge.

*Starting shaft will be constructed as a discharge vertical shaft (down-stream storage) after the completion of discharge tunnel installation.


Construction flow

Measurement turret


Lateral view of discharge outlet caisson

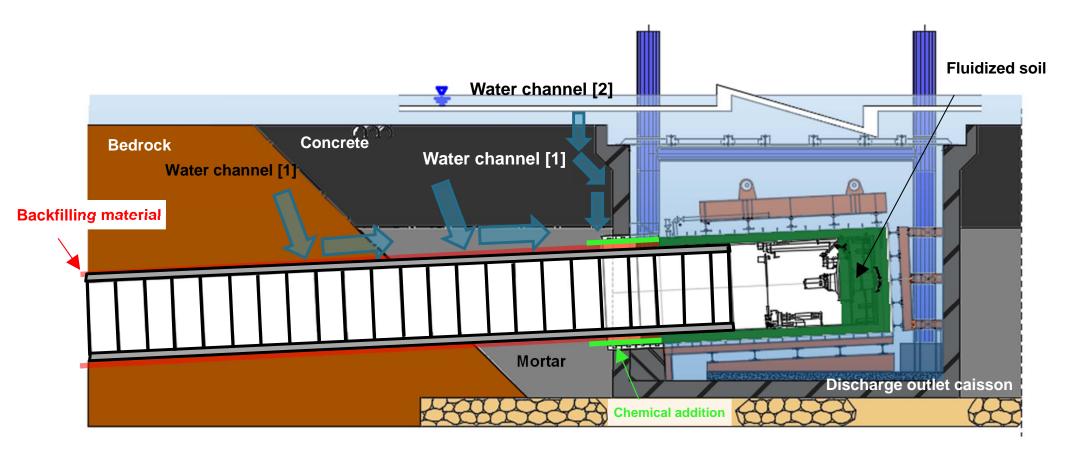
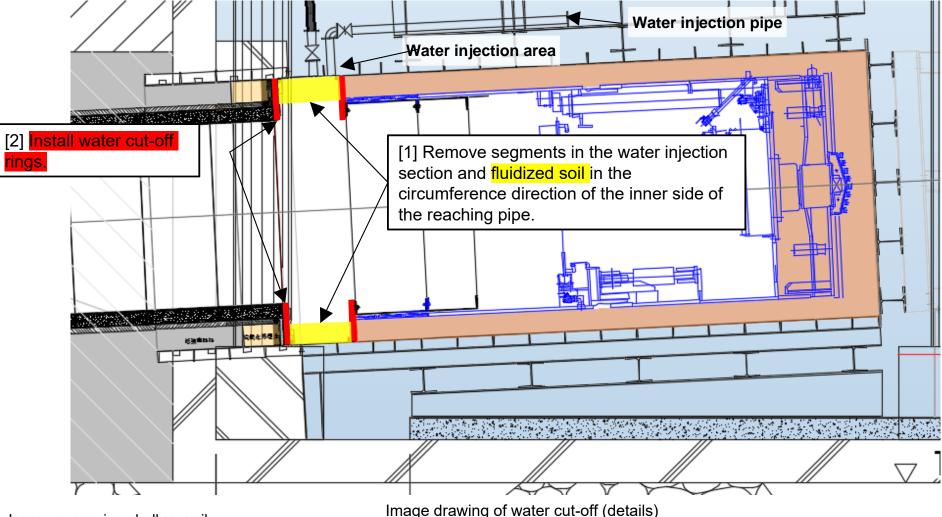

TEPCO

Image drawing of reaching pipe (shield machine) removal

- TEPCO
- To have the shield machine reach the discharge outlet with high accuracy, reduce the drilling speed of the shield machine just before the mortar portion.



- To ensure the work safety, underground water inside the bedrock (water channel [1]) and the underground water at the connection part between the discharge outlet caisson and the concrete and mortar (water channel [2]) will be cut-off.
- The water channel [1], the gap between segments and bedrock in the section from the starting shaft on the land side to the mortar portion, will be cut-off filled with backfilling materials (red line).
- The water channel [2], assuming the underground water flows through the connection between the discharge outlet caisson and concrete and mortar, will be cut-off the water through chemical injection (green line) from inside the tunnel.

- Remove segments at the water injection section from inside the tunnel. Then remove backfilling materials around the periphery of the tunnel and the fluidized soil will be removed ([1]).
- > To stop water from the fluidized soil removed, install a water cut-off ring from inside the tunnel. ([2])
- > After completing the water cut-off, remove the measurement turret of the discharge outlet caisson.

- Install a temporary lid at the connection between the starting shaft and the tunnel to prevent seawater inflow into the starting shaft side (on land side).
- > Before injecting seawater, connect an air vent hose by diving operations to create an air passage inside the tunnel.
- Diving operations operate water injection valves that regulate water injection from the water injection pipe to fill the inside of the tunnel with seawater gradually.

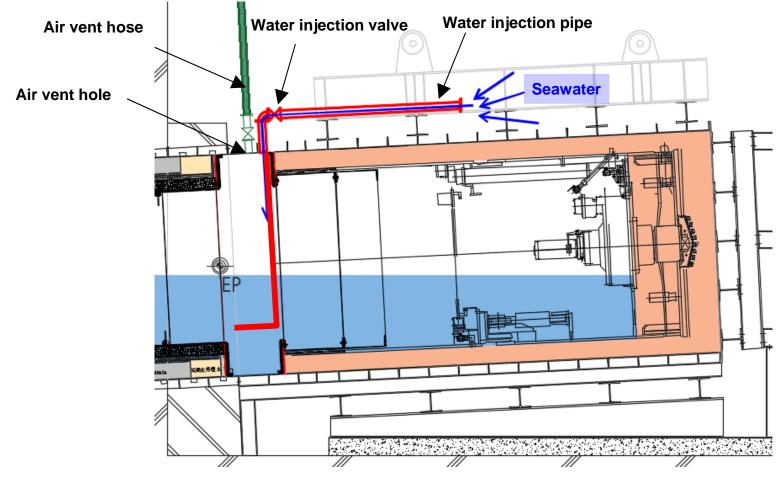


Image drawing of water injection work condition

TEPCO

2-1(1) [3] Methods of seawater intake and discharging ALPS treated water after dilution [Reference]Discharge methods (connection): Removal of the reaches pipe (shield machine)

- After completing the water injection inside the discharge tunnel, remove bolts connecting the discharge outlet caisson with the reaching pipe by the diving operation.
- After slinging work for crane by diving operation, remove the reaching pipe together with the shield machine by the crane barge, Slinging will be carried out to the reaching pipe with the diving operation, and is removed by the crane barge.

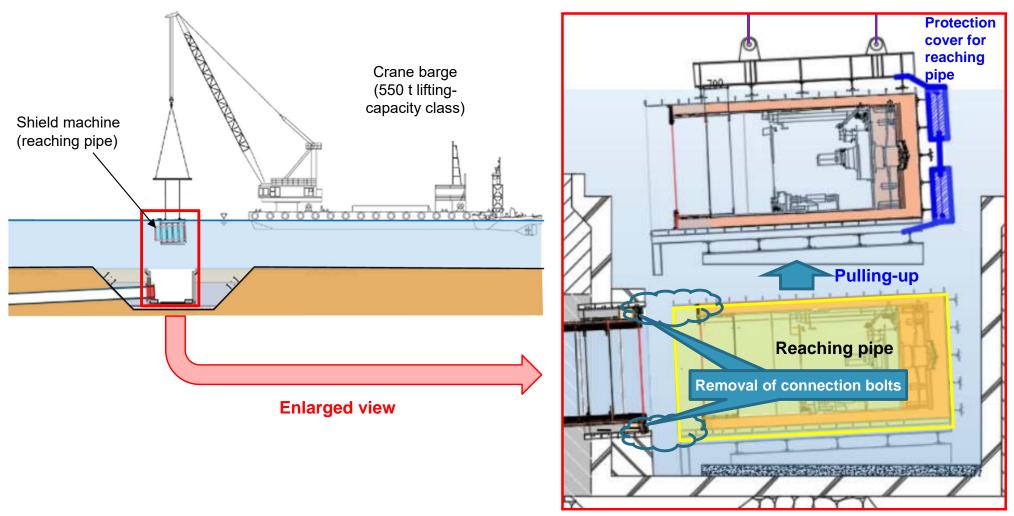


Image drawing of reaching pipe (shield machine) removal

ΤΞΡϹΟ

Methods of seawater intake and discharging ALPS treated water after dilution

Water intake methods: construction methods
Discharge methods: construction methods

Enhanced monitoring associated with offshore construction work

- In implementing the offshore construction, the following measures will be taken due to concern over swirl-up of the seabed soil:
 - Seawater monitoring
 - > Analysis of earth and sand excavated
 - Measures against turbidity

2-1(1) [3] Methods of seawater intake and discharging ALPS treated water after dilution [Supplement] Ongoing marine monitoring

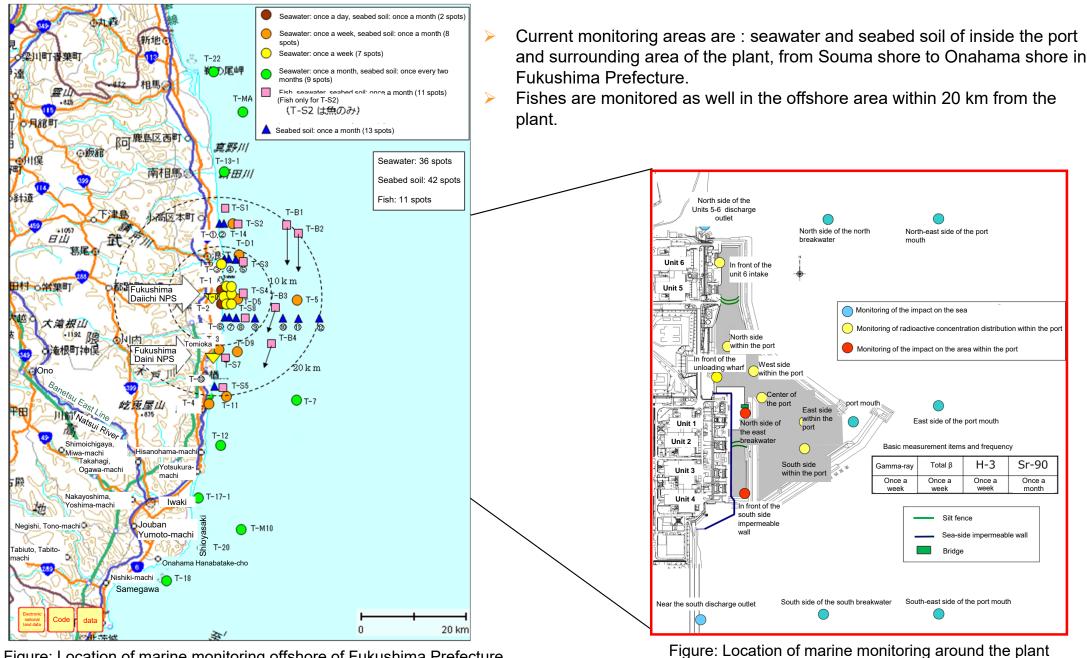
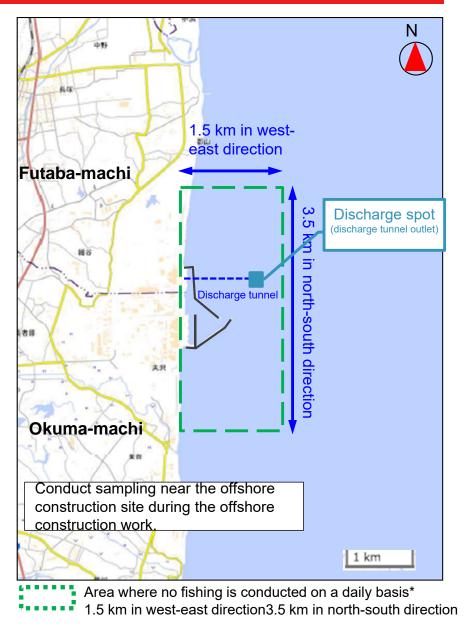
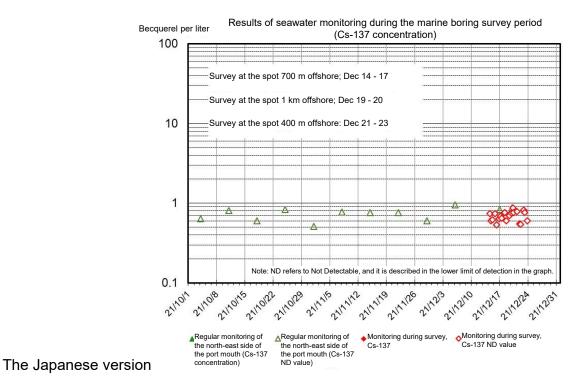


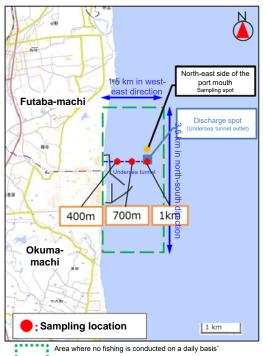
Figure: Location of marine monitoring offshore of Fukushima Prefecture ^{FIG} *Seawater is monitored offshore of Ibaraki Prefecture and Miyagi Prefecture in addition to these spots. The Japanese version shall prevail.

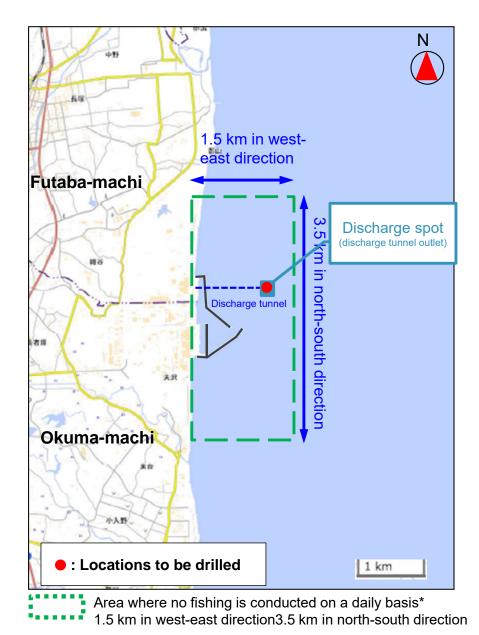
TEPCO


- Items to be implemented
 - During the construction work such as partition weirs within the port of the power plant, measures will be taken to prevent turbidity and the spread of radioactive materials.
- Implementation details
 - Similar to the previous construction work (see 3.5), we will place construction fences during construction work and slow down the work speed to prevent water pollution, and carefully carry out the work to suppress* the swirling and spread of the seabed soil containing radioactive materials.
 - > During the construction work, seawater will be constantly monitored.
- Responses when any significant change is detected
 - > When any significant rise of the cesium concentration in the seawater or a higher water impurity level is observed, suspend the construction work temporarily.
 - > Then, after confirming the cesium concentration level and the water impurity level falls within the allowable levels, resume the construction work.

The Japanese version shall prevail. Outline of installation of Pollution prevention fences during the building of partition weir


TEPCO

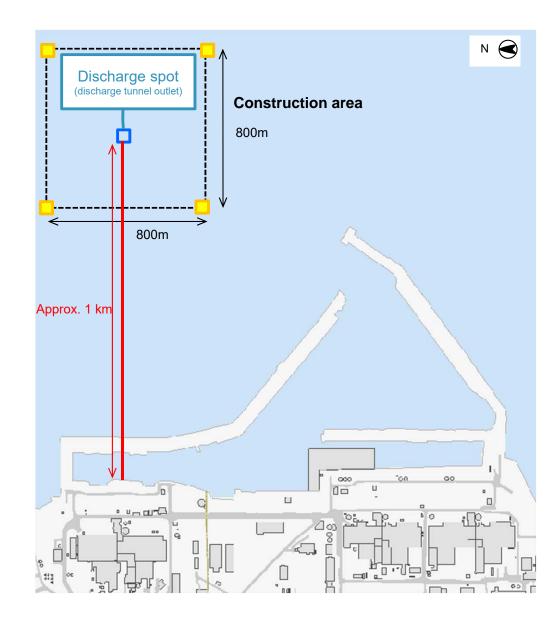

- Implementation overview
 - During the period of offshore construction work (including drilling, feeding foundation riprap, caisson installation work), conduct sampling seawater at the workplace to check the cesium concentration level, if the work causes any rise.
- Implementation details
 - Period: Before the start of the construction, during the construction work
 - > Place: Around the offshore construction site of the power plant
 - Frequency: Every working day *To be reviewed according to the status of the construction.
- Responses when any significant change is detected
 - Suspend the construction work, when a significant increase in the cesium concentration caused by the construction work is detected.
 - Then, after confirming the cesium concentration level and the water impurity level falls within the allowable levels, resume the construction work.


TEPCO

- Implementation overview
 - Daily sweater samplings were conducted in the period of the geological survey (maritime boring), before and after the work in a day in the range of survey to verify the cesium concentration rise in the seawater.
- Implementation details
 - Period: During the marine boring survey
 - Place: Near the worksite
 - Frequency: Every day before and after the work
- Result
 - > All the monitoring results were negative, and no significant change was observed from the survey.

- Implementation overview
 - Conduct sampling from a part of soil and sand excavated offshore in the discharge tunnel outlet, and analyze the cesium concentration in the soil. Lift and transport the soil excavated from the power port to the site and mound in the soil dumping field on site.
- Implementation details
 - Period and frequency: Initial period, middle period, and completion time of the construction
 - *To be reviewed according to the status of the construction.
 - Place: Discharge tunnel outlet
- Responses when any significant change is detected
 - In the analysis assessment of the soil and sand, when a significant rise in the cesium concentration in the soil is detected, they will be boxed into containers and control adequately on site.

TEPCO


- Items to be implemented
 - During the construction work, such as marine excavation offshore the power plant, conduct measures against turbidity.
- Implementation details
 - At the initial construction period, slow down the work speed and reduce the work per hour to suppress generating of turbidity. The work speed is adjusted depending on the situation.
 - > Check the turbidity with visual inspection at the site.

Using a turbidity meter to check in the construction area boundaries (four locations), and control the turbidity using a SS* indicators.

Control value: SS: BG+10mg/L *SS(suspended solids)

: Mass of suspended solids (there is a correlation with turbidity)

- Responses when any significant change is detected
 - When a high degree of turbidity was observed, suspend the construction work temporarily.
 - Depending on the degree of turbidity, place like an oil fence (serving as the oil measure), and consider the use of a sedimentation agent (inorganic flocculant).
 - > Then, confirm the degree of turbidity is in allowable level, resume the construction work..

2-1(1) [3] Methods of seawater intake and discharging ALPS treated water after dilution [Reference] Measures against fish within the port (1/2)

Items to be implemented

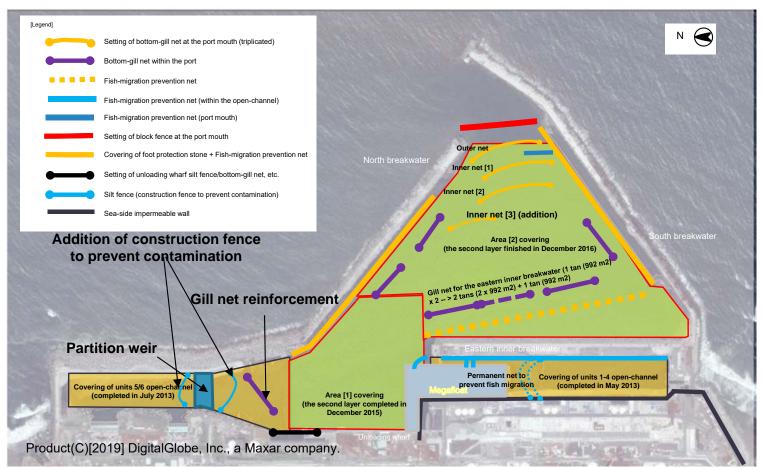
In response to the fact that radioactive cesium with beyond the permission level of government's criteria has been detected in a fish caught, called jacopevers, gill nets within the power port are reinforced.

Implementation details

[1] Of the gill nets at the port mouth, additional gill nets (inner nets [3]) are added to the inner side of the inner nets [2] to prevent migration and enhance the effect of extermination.

[2] Of two gill nets near the eastern inner breakwater within the port, one gill net is extended for two *tans* (2 x 992 m2) to prevent migration and enhance the effect of extermination.

[3] Planning a basket net fishing or the like within the port and create drastic measures to get rid of fishes effectively.



Planned enhancement of measures against fish within the port

TEPCO

2-1(1) [3] Methods of seawater intake and discharging ALPS treated water after dilution [Reference] Measures against fish within the port (2/2)

- Items to be implemented Enhance measures for fish within the power port when building partition weirs.
- Implementation details
 - [1] Place construction fences to prevent water pollution when building partition weirs.
 - [2] Then, arrange the location of gill nets within the port, and place them in the area near the partition weir.
 - [3] Use the existing gill nets and fish-migration prevention nets (see figure below) continuously.

The Japanese version shall prevail.

Measures against fish within the port

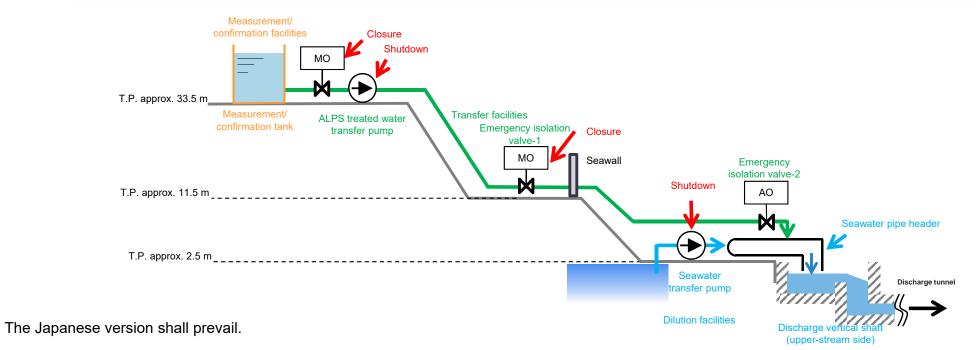
TEPCO

Responses to issues pointed out* at the review meeting, etc.

*: Documents 2-2, Attachment 2 for (the 97th) Specified Nuclear Facility Monitoring and Assessment Review Meeting

Issues pointed out [2]

(2-1 Major issues to be reviewed based on the Nuclear Reactor Regulation Act)

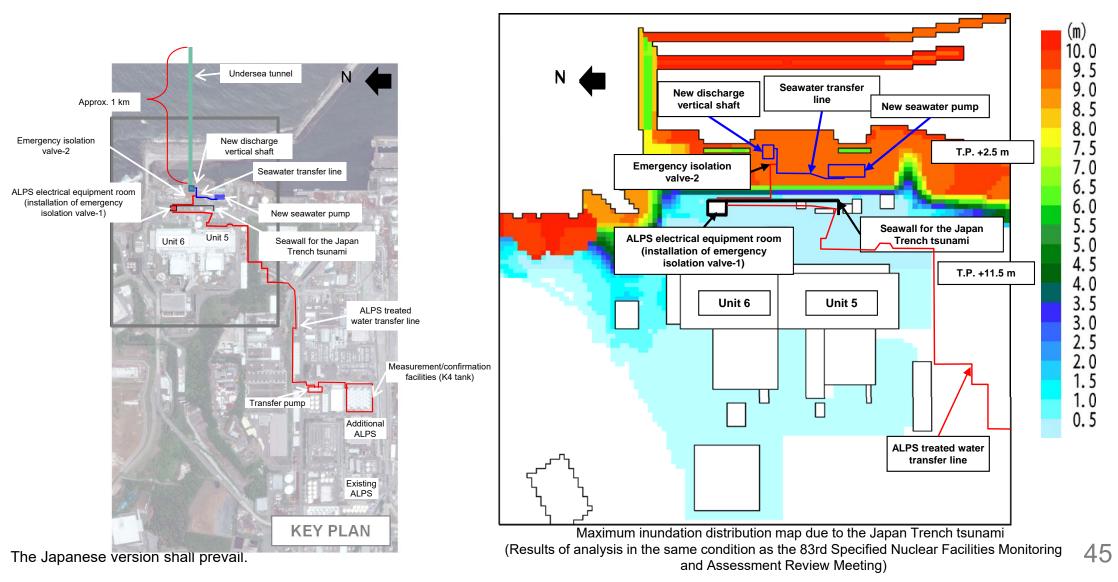

(1) Discharge Facilities of ALPS Treated Water into the Sea

- [5] Structure and strength of equipment, protection against natural phenomena such as earthquakes and tsunamis, prevention of misoperation, reliability, etc.
- On the ground of possible physical unavailability of discharge into the sea caused by tsunamis and storm surges, the need to detect abnormalities observing the water level using such as the vertical shaft and tide gauges, and to suspend discharge into the sea should be considered.

2-1(1) [5] Structure and strength of equipment, protection against natural phenomena such as earthquakes and tsunamis [2]-1 Design consideration for natural phenomena **TEPCO**

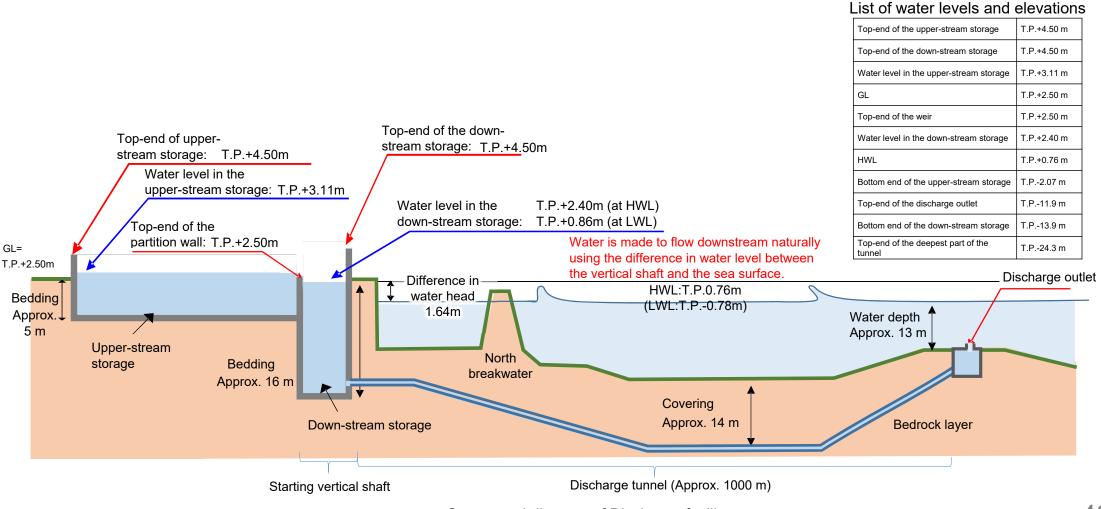
As a design consideration for natural phenomena, when risks are found that facilities may be damaged, the discharge operation will be manually deactivated by the monitoring and control device in the central monitoring room in the seismic isolation building. Specific phenomena assumed are as follows:

No.	Events that lead to manual shutdown	Reason for shutdown
1	Earthquakes with a seismic intensity of a lower 5 or greater	To minimize the impact of functional loss of the facilities due to earthquakes.
2	Tsunami advisory	There are risks that tsunamis may damage equipment at T.P. 2.5 m.
3	Tornado advisory	There are risks that tornadoes may damage each facility.
4	High tide warning	There are risks that the discharge into the sea by the head pressure cannot be carried out as designed.
5	Others	When there is a sign of abnormality other than above 1 - 4, and if the Shift Manager deems it necessary, the discharge into the sea will be shut down.



2-1 (1) [5] Structure and strength of equipment, protection against natural phenomena such as earthquakes and tsunamis

[Reference] Positional overview between equipment/facilities and seawall

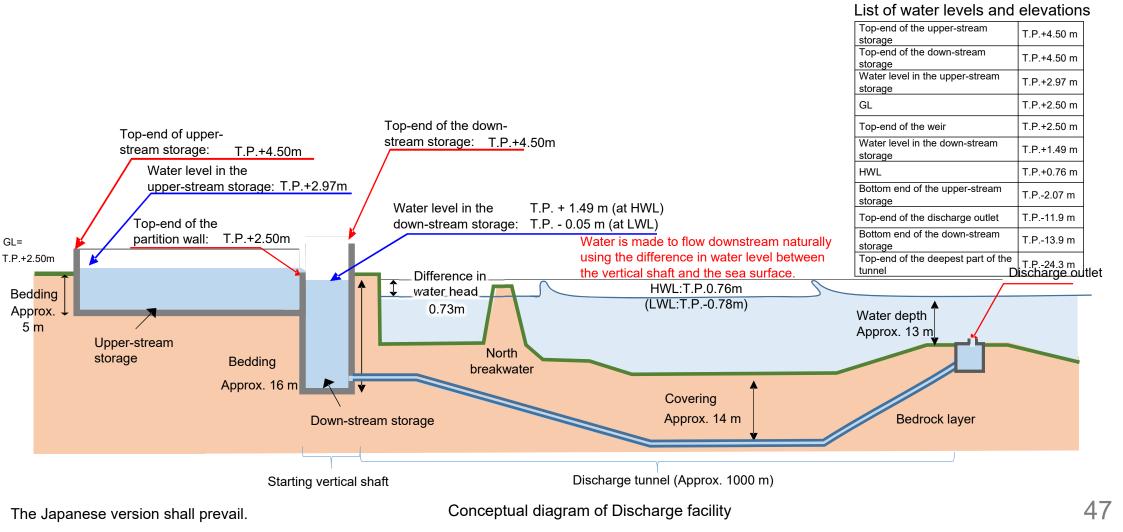

- Based on the analysis results for the Japan Trench Tsunami, the ground at T.P. +2.5 m may be inundated to a depth of 9 meters and equipment such as seawater pumps may be flooded, presumably.
- The emergency isolation valve (1) at T.P. +11.5 m is enclosed by the seawall, and thereby it will not be flooded. The ALPS treated water transfer line will be installed at about 0.3 m to 0.4 m above the ground, with a maximum inundation depth may be less than 0.2 m at all locations there. Therefore, no inundation is presumed.

2-1 (1) [5] Structure and strength of equipment, protection against natural phenomena such as earthquakes and tsunamis

[Reference] Concept of hydraulic design (1/2)

- Concept of hydraulic design (when three seawater transfer pumps are operating)
- > Pressure is released to the atmosphere from the discharge vertical shaft (down-stream storage) in order to reduce pressure in pipes.
- The structure of the discharge vertical shaft (down-stream storage) is linked to the tide level in the open ocean through the discharge tunnel and the discharge outlet. It was confirmed that even when three seawater transfer pumps are in operation (510,000 m³/day = 6 m³/s), gravity flow is possible using the water head difference between the discharge vertical shaft (down-stream storage) and the sea surface (about 1.6 m: total loss from the discharge vertical shaft (down-stream storage) to the discharge outlet).

The Japanese version shall prevail.


Conceptual diagram of Discharge facility

2-1 (1) [5] Structure and strength of equipment, protection against natural phenomena such as earthquakes and tsunamis

Document 1-1 (excerpt), the 9th Review Meeting on the Implementation Plan Regarding the Handling of ALPS Treated Water

[Reference] Concept of hydraulic design (2/2)

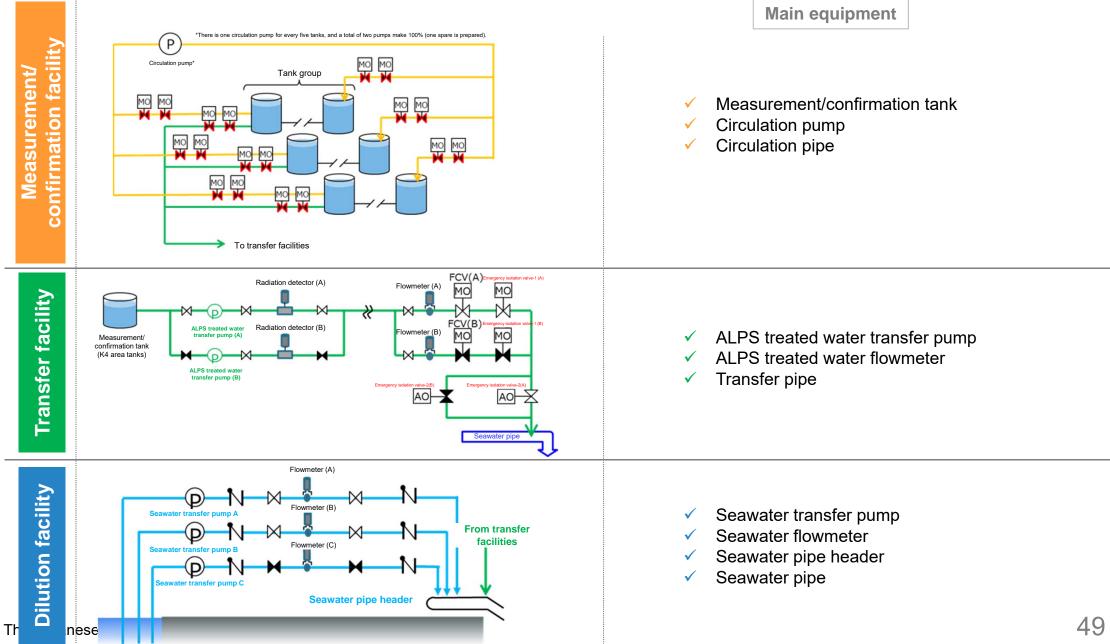
- Concept of hydraulic design (when two seawater transfer pumps are operating)
- Given maintenance such as inspections and responses in the event of one of the pumps shutting down, three pumps are prepared. Usually, two pumps operate, and one pump is on standby.
- Under the condition using 2 seawater transfer pumps (340,000 m³/day = 4 m³/s), the natural water flow downward is found due to the height difference between the discharge vertical shaft (down-stream storage) and the sea surface (about 0.7 m: total loss from the discharge vertical shaft (down-stream outlet).

Responses to issues pointed out* at the review meeting, etc.

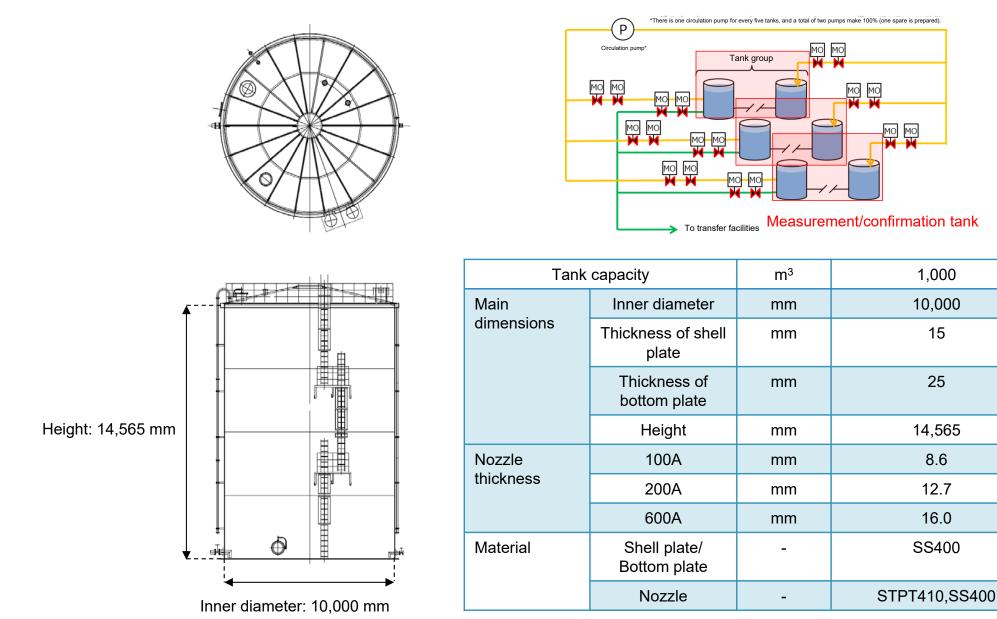
*: Documents 2-2, Attachment 2 for (the 97th) Specified Nuclear Facility Monitoring and Assessment Review Meeting

Issues pointed out [3]

(2-1 Major issues to be reviewed based on the Nuclear Reactor Regulation Act)


(1) Discharge Facilities of ALPS Treated Water into the Sea

[5] Structure and strength of equipment, protection against natural phenomena such as earthquakes and tsunamis, prevention of misoperation, reliability, etc.


<u>Regarding the main facilities, such as ALPS treated water transfer line, seawater transfer line, and seawater pipe header, the basic specifications including material properties, the main structure, and the structural strength assessment details (those based on applicable standards and criteria other than JSME are included) should be provided.</u>

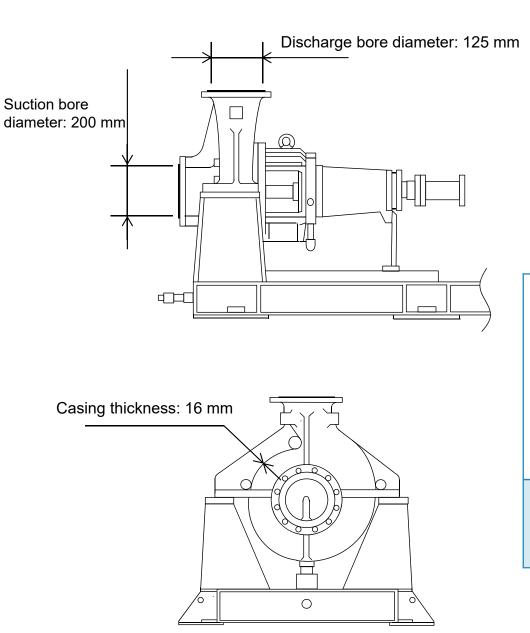
2-1(1) [5] Structure and strength of equipment, protection against natural phenomena such as earthquakes and tsunamis [3]-1 Main equipment of ALPS treated water dilution/discharge facilities

Basic specifications of the main equipment and instruments of the ALPS treated water dilution/discharge facilities are described below.

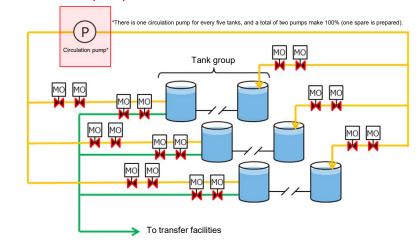
2-1(1) [5] Structure and strength of equipment, protection against natural phenomena such as earthquakes and tsunamis TEPCO [3]-2 Basic specifications and main structure of the measurement/confirmation tank

Design temperature 50 °C >

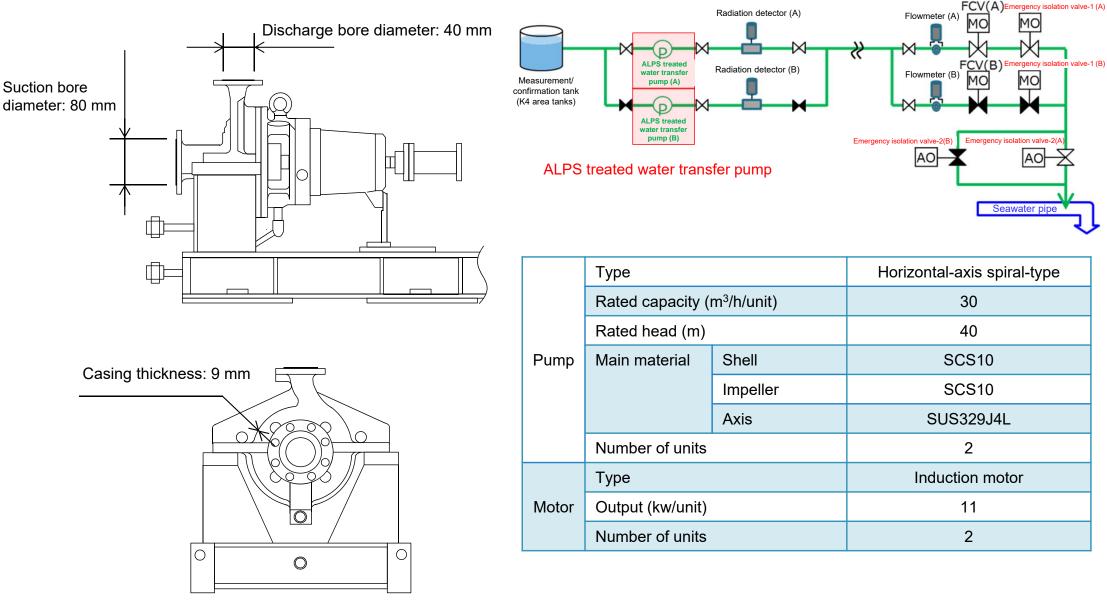
Structural drawing of measurement/confirmation tank The Japanese version shall prevail.

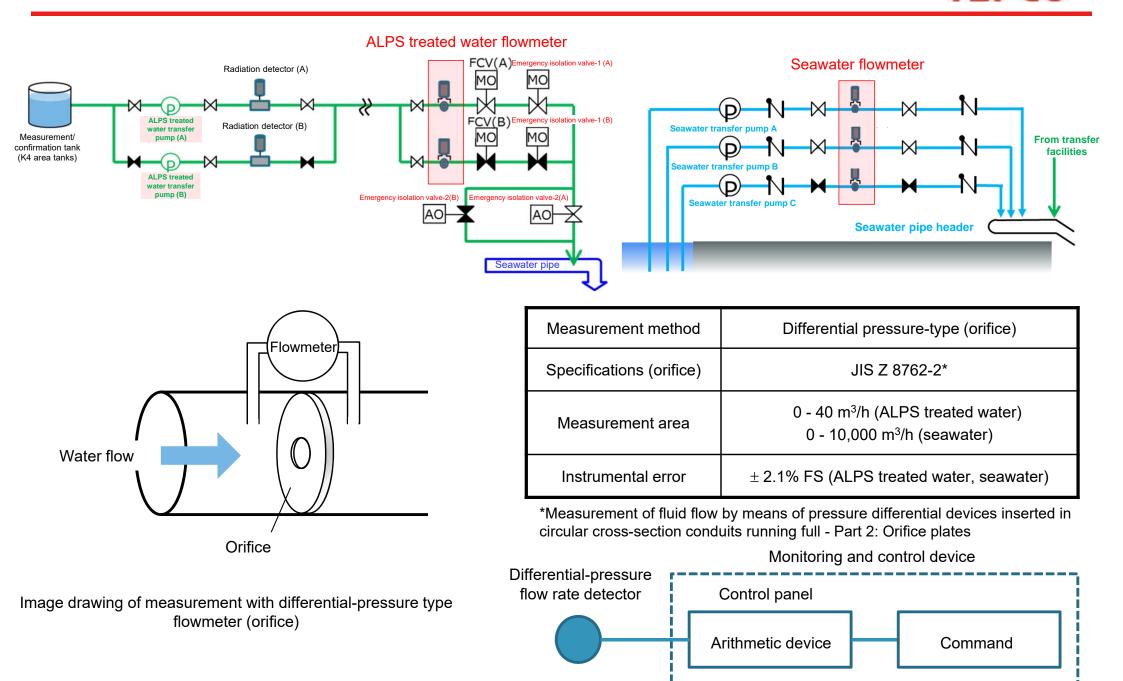

15

25


8.6

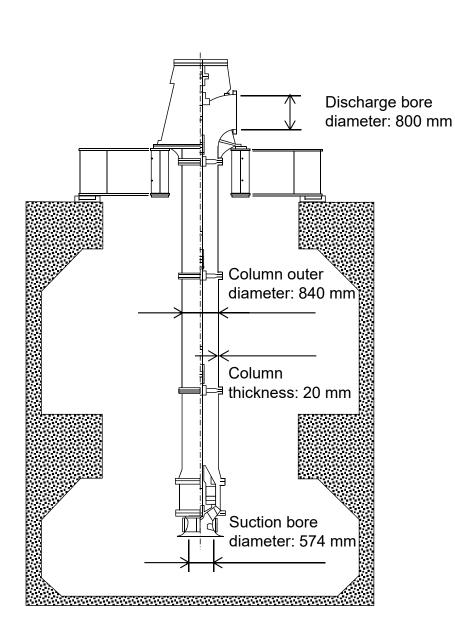
2-1(1) [5] Structure and strength of equipment, protection against natural phenomena such as earthquakes and tsunamis [3]-3 Basic specifications and main structure of the circulation pump

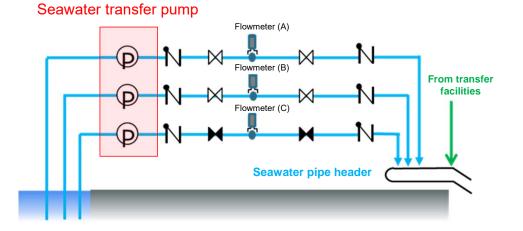

Circulation pump


	Туре		Horizontal-axis spiral-type	
	Rated capacity (m ³ /h/unit)		160	
	Rated head (m)		41.5	
Pump	Main material	Shell	SCS10	
		Impeller	SCS10	
		Axis	SUS329J4L	
	Number of units		2	
	Туре		Induction motor	
Motor	Output (kw/unit)		37	
	Number of units		2	

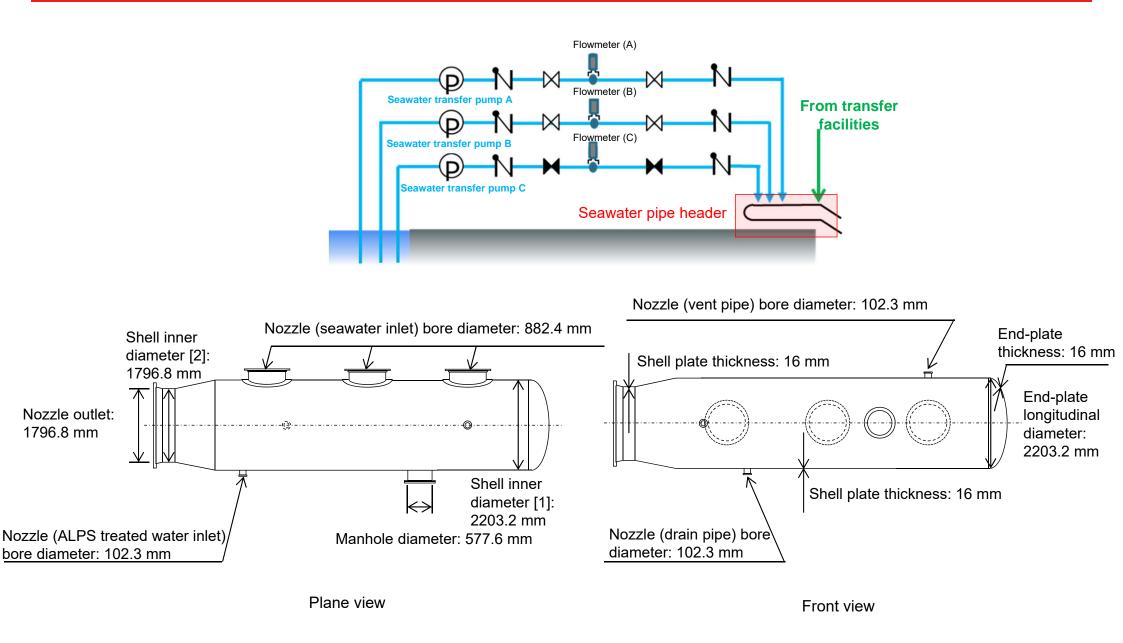
Structural drawing of circulation pump The Japanese version shall prevail.

2-1(1) [5] Structure and strength of equipment, protection against natural phenomena such as earthquakes and tsunamis [3]-4 Basic specifications and main structure of the ALPS treated water transfer pump **TEPCO**




Structural drawing of ALPS treated water transfer pump The Japanese version shall prevail. 2-1(1) [5] Structure and strength of equipment, protection against natural phenomena such as earthquakes and tsunamis [3]-5. Basic specifications of ALPS treated water flowmeter and seawater flowmeter **TEPCO**

The Japanese version shall prevail.


2-1(1) [5] Structure and strength of equipment, protection against natural phenomena such as earthquakes and tsunamis [3]-6 Basic specifications and main structure of the seawater transfer pump **TEPCO**

	Туре		Vertical-axis, single-stage, and mixed flow-type
	Rated capacity (m ³ /h/unit)		7,086
	Rated head (m)		27.1
Pump	Main material	Shell	2%NiFC
		Impeller	SCS14
		Axis	SUS316
	Number of units		3
	Туре		Induction motor
Motor	Output (kw/unit)		760
	Number of units		3

Structural drawing of seawater transfer pump The Japanese version shall prevail. 2-1(1) [5] Structure and strength of equipment, protection against natural phenomena such as earthquakes and tsunamis [3]-7 Basic specifications and main structure of the seawater pipe header

Structural drawing of seawater pipe header

2-1(1) [5] Structure and strength of equipment, protection against natural phenomena such as earthquakes and tsunamis [2]-7 Structural strength assessment of the seawater pipe header (1/8)

- Assessment method (straight-pipe)
 - We will check whether the minimum thickness of the seawater pipe header (straight-pipe portion) satisfies the required thickness calculated from the PPD-3411 formula (PPD-1.3) in Rules on Design and Construction for Nuclear Power Plants (hereinafter [1]), or Table PPD-3411-1 in Rules on Design and Construction for Nuclear Power Plants PPD-3411(3) (hereinafter [2]).
 - The required thickness of the pipe should be [1] or [2] listed below, whichever is greater.
 - Pipe receiving pressure on the inner surface

The thickness required for calculation of the pipe: $t = \frac{PD_0}{2S\eta + 0.8P} \cdots$ [1]

- *P* : Maximum working pressure (MPa)
- *D*₀ : Pipe outer diameter (mm)
- *S* : Allowable tensile stress of materials at the maximum working temperature (MPa)
- η : Efficiency of longitudinal joint
- The minimum thickness required in Rules on Design and Construction for Carbon Steel Pipe: t_r · · · [2]
 --> Value obtained based on Table PPD-3411-1 of Rules on Design and Construction for Nuclear Power Plants PPD-3411(3)

Table-1 Results of structural strength assessment of the seawater pipe header (straight-pipe portion)

Equipment assessed	Outer diameter (mm)	Material property	Maximum working pressure (MPa)	Maximum working temperature (°C)	Required thickness (mm)	Minimum thickness (mm)
Seawater pipe	2235.2	SM400B	0.60	40	11.14	<u>14.90</u>
header	1828.8	SM400B	0.60	40	9.11	<u>14.90</u>

The underlined part was corrected to optimize the description based on Attachment-3, Chapter II 2.50 of the Implementation Plan. The Japanese version shall prevail.

2-1(1) [5] Structure and strength of equipment, protection against natural phenomena such as earthquakes and tsunamis [2]-7 Structural strength assessment of the seawater pipe header (2/8)

Assessment method (reducer)

- We will check whether the minimum thickness of the seawater pipe header (reducer) satisfies the required thickness calculated from the PPD-3415.1 formula (PPD-1.8) in Rules on Design and Construction for Nuclear Power Plants (hereinafter [1]), or the PPD-3415.1 formula (PPD-1.9) in Rules on Design and Construction for Nuclear Power Plants (hereinafter [2]).
- > The required thickness of the reducer should be [1] or [2] listed below, whichever is greater.
 - Required thickness of the circular cone

$$t_1 = \frac{PD_i}{2\cos\theta(S\eta - 0.6P)} \cdot \cdot \cdot [1]$$

• Required thickness of the rounded part of the hem

$$t_2 = \frac{PD_iW}{4\cos\theta(S\eta - 0.1P)} \cdot \cdot \cdot [2]$$

P : Maximum working pressure (MPa)

However,
$$W = \frac{1}{4} \left(3 + \sqrt{\frac{D_i}{2r \cos \theta}} \right)$$

- *D_i* : Inner diameter (mm) of the section that the circular cone is perpendicular to the axis of the portion connecting to the rounded part of the hem
- S : Allowable tensile stress of materials at the maximum working temperature (MPa)
- η : Efficiency of longitudinal joint
- *r* : Internal radius (mm) of the rounded part of the hem of the circular cone

	Equipment assessed	Inner diameter (mm)	Material property	Maximum working pressure (MPa)	Maximum working temperature (°C)	Required thickness (mm)	Minimum thickness (mm)
The Japa	Seawater pipe header	2203.2	SM400B	0.60	40	11.3	14.90

Table-2 Results of structural strength assessment of the seawater pipe header (reducer)

2-1(1) [5] Structure and strength of equipment, protection against natural phenomena such as earthquakes and tsunamis [2]-7 Structural strength assessment of the seawater pipe header (3/8)

Assessment method (end-plate)

- The seawater pipe header (end-plate) is a dish-formed end-plate. Its outer has a diameter equal to or greater than the radius of the inner surface at the center, the radius of the rounded part of the hem is equal to or greater than three times the thickness, and it is equal to or greater than 0.06 times the outer diameter (50 mm if it is less than 50 mm).
- We will check that the minimum thickness of the seawater pipe header (end-plate) satisfies the required thickness calculated from the minimum thickness of the dished end-plate (Rules on Design and Construction for Nuclear Power Plants, PPD -3415.2 (PPD -1.12)).

$$t = \frac{PRW}{2Sn - 0.2P} \qquad \qquad \text{However,} \quad W = \frac{1}{4} \left(3 + \sqrt{\frac{R}{r}} \right)$$

- *P* : Maximum working pressure (MPa)
- *R* : Inner radius of the center portion of the end-plate (mm)
- *W* : Coefficient due to the shape of the dished end-plate (-)
- *r* : Inner radius of the rounded part of the hem of the dished end-plate (mm)
- S : Allowable tensile stress of materials at the maximum working temperature (MPa)
- η : Efficiency of the joint when produced by joining end-plates

Equipment assessed	Inner diameter (mm)	Material property	Maximum working pressure (MPa)	Maximum working temperature (°C)	Required thickness (mm)	Minimum thickness (mm)
Seawater pipe header	2203.2	SM400B	0.60	40	10.19	13.40

Table-3 Results of structural strength assessment of the seawater pipe header (end-plate)

The Japanese version shall prevail.

2-1(1) [5] Structure and strength of equipment, protection against natural phenomena such as earthquakes and tsunamis [2]-7 Structural strength assessment of the seawater pipe header (4/8)

- Assessment methods (hole reinforcement calculation)
- A hole provided at the seawater pipe header exceeds 64 mm, beyond the value "d" obtained based on the diagrams PPD-3422-1 and PPD-3422-2. With this, reinforcement calculation for the hole will be carried out.
- We will check whether the effective gross area of reinforcement for the hole provided at the seawater pipe header (A_0) satisfies the area required for reinforcement (A_r).
 - A_1 : Effective area of the main pipe for the reinforcement of the hole
 - A_2 : Effective area of the nozzle for the reinforcement of the hole
 - A_3 : Effective area of the main pipe for the reinforcement of the hole
 - A_4 : Effective area of the stiffener for the reinforcement of the hole
 - η : When the hole passes through the longitudinal joint of the pipe, it is an efficiency specified in the PVD-3110 Otherwise, it is 1.
 - F : Value obtained based on the diagram PPD-3424-1
 - t_s : Thickness of the main pipe
 - t_{sr} : Required thickness for calculation of the main pipe
 - L_A : Effective area of reinforcement divided by a straight line parallel to the centerline of the hole
 - *d* : Diameter of the hole appearing in the section
 - t_n : Minimum nozzle thickness
 - t_{nr} : Thickness required for calculation of the nozzle
 - θ : Intersection angle between branch pipe centerline and main pipe centerline (degrees)
 - L_N : Effective area of reinforcement divided by a line parallel to the plane of the main pipe
 - S_n : Allowable tensile stress of the nozzle material at the maximum working temperature
 - S_s : Allowable tensile stress of the main pipe material at the maximum working

$$A_2 = 2(t_n - t_{nr}) \operatorname{cosec} \theta \, L_N \frac{S_n}{S_s}$$

The Japanese version shall prevail.

59

 $A_0 = A_1 + A_2 + A_3 + A_4$

 $A_1 = (\eta t_s - F t_{sr})(2L_A - d)$

2-1(1) [5] Structure and strength of equipment, protection against natural phenomena such as earthquakes and tsunamis [2]-7 Structural strength assessment of the seawater pipe header (5/8)

 D_{0e}

 D_{0n}

t_e

 L_2

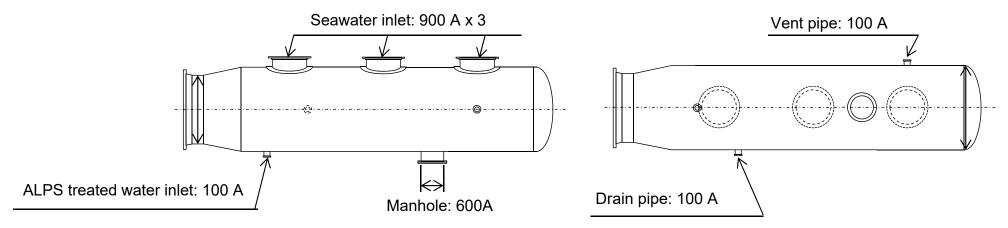
 t_{r3}

$$A_3 = (L_1)^2 \sin\theta \frac{S_n}{S_s}$$

(When the stiffener is within the effective area L_A)

$$A_4 = (D_{0e} - D_{0n} cosec\theta) t_e \frac{S_e}{S_s} + (L_2)^2 \frac{S_e}{S_s}$$

(When the stiffener extends to the outside the effective area L_A)


$$A_4 = (2L_A - D_{0n} cosec\theta) t_e \frac{S_e}{S_s}$$

 $A_r = 1.07 dt_{r3} (2 - \sin \theta)$

- L_1 : Leg length of the fillet of the nozzle or the shorter-side length of the reinforced nozzle portion
- S_e : Allowable tensile stress of the stiffener material at the maximum working temperature
 - : Outer diameter of the stiffener

: Outer diameter of the nozzle

- :Minimum thickness of the stiffener
- : Leg length of the fillet surface of the stiffener
- : Thickness required by the provisions of PPD-3411 (mm)

Table-4: Results of structural strength assessment of the seawater pipe header (reinforcement calculation of the hole)

	Equipment assessed	Nozzle bore diameter	Area to be assessed	Area required for reinforcement <i>A_r</i> (mm²)	Effective gross area for reinforcement <i>A_o</i> (mm ²)
		100A		732.25	1335.66
	Seawater pipe header	600A	Nozzle	4134.36	6800.89
The Japan		900A		6316.06	41500.34

2-1(1) [5] Structure and strength of equipment, protection against natural phenomena such as earthquakes and tsunamis [2]-7 Structural strength assessment of the seawater pipe header (6/8)

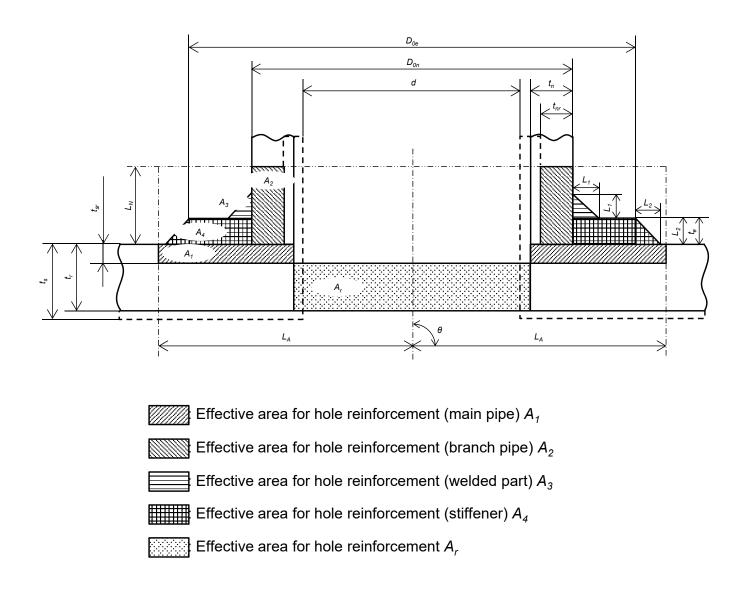


Diagram of calculation for hole reinforcement

2-1(1) [5] Structure and strength of equipment, protection against natural phenomena such as earthquakes and tsunamis [2]-7 Structural strength assessment of the seawater pipe header (7/8)

- Assessment method (reinforcement calculation of multi-holes)
 - We will perform reinforcement calculation in cases where the effective reinforcement area for two or more holes provided at the seawater pipe header overlaps and verify that the reinforcement is sufficient by meeting the following conditions.
 - Cross-sectional area (A_{so}) of the main pipe between the two holes \geq the required cross-sectional area (A_{sr}) of the main pipe between the two holes
 - The effective area of reinforcement between two holes $(A_{oi}) \ge 1/2$ of the area required for reinforcement of two holes (A_{ri}) •
 - Center distance of 2 holes $(L_s) \ge 1.5$ times the average diameter of 2 holes (L)•

$$A_{so} = \left(L_s - \frac{d + d_D}{2}\right) t_r \qquad \qquad A_{sr} = 0.7 L_s t_{sr} F$$

$$A_{oi} = \left(L_s - \frac{d + d_D}{2}\right)\left(t_s - t_{sr}\right) + \frac{A_2 + A_{2s}}{2} + \frac{A_3 + A_{3s}}{2} + \frac{A_4 + A_{4s}}{2}$$

 A_2 , A_{2s} , A_3 , A_{3s} , A_4 , and A_{4s} are according to the calculation of one hole.

$$A_{ri} = \frac{A_r + A_{rs}}{2} \qquad \qquad , \qquad L = 1.5 \left(\frac{d + d_D}{2}\right)$$

 A_r and A_{rs} are according to the calculation of one hole.

Table-5: Results of structural strength	assessment of the seawater	nine header	(reinforcement calculatio	n of multiple holes)
Table-5. Results of structural strength	assessment of the seawater	pipe neauei	(Tellinorcenterit calculatio	

	Equipment assessed	Nozzle bore diameter	Area to be assessed	Required values	Values assessed
				A _{sr} :3512.02 (mm²)	A _{so} :8963.84 (mm ²)
	Seawater pipe header	900A	Nozzle	A _{ri} :6430.06 (mm²)	A _{oi} :19535.62(mm²)
The				L :1347.60 (mm)	<i>Ls</i> :1500.00 (mm)

- : Diameter of the hole appearing in the section d
- : Diameter of the adjoining holes appearing in the d_{D} section
- : Thickness of the main pipe t,
- : Required thickness for calculation of the main pipe tsr
- : Value obtained based on the diagram PPD-3424-1 F

2-1(1) [5] Structure and strength of equipment, protection against natural phenomena such as earthquakes and tsunamis [2]-7 Structural strength assessment of the seawater pipe header (8/8) TEPCO

Assessment method (mounting strength of stiffener)

 $W = dt_{sr}S_s - (\eta t_s - Ft_{sr})(2L_A - d)S_s$

We will verify that the strength of the weld is sufficient by assessing the load (W) to be borne by the weld based on the PPD-3424 (8).

W

- d : Diameter of the hole appearing in the section
- ts : Thickness of the main pipe
- t_{sr} : Required thickness for calculation of the main pipe
- S : Allowable tensile stress of the main pipe material at the maximum working temperature
- : Efficiency specified in PVD -3110 ŋ
- F : Value obtained based on the diagram PPD-3424-1
- : Effective area of reinforcement divided by a straight line parallel L⊿ to the centerline of the hole

Table-6: Results of structural strength assessment of the seawater pipe header (mounting strength of stiffener)

Equipment assessed	Nozzle bore diameter	Area to be assessed	Load to be borne by the weld W(N)
	100A		$\textbf{-4.98}\times 10^{4^{\star}}$
Seawater pipe header	600A	Nozzle	-2.81 × 10 ^{4*}
	900A		-4.30 × 10 ^{5*}

*The load to be borne by the welded section is negative. Therefore, it is not necessary to verify the mounting strength of the welded section.

2-1(1) [5] Structure and strength of equipment, protection against natural phenomena such as earthquakes and tsunamis [2]-8. Structural strength assessment of other equipment (1/2)

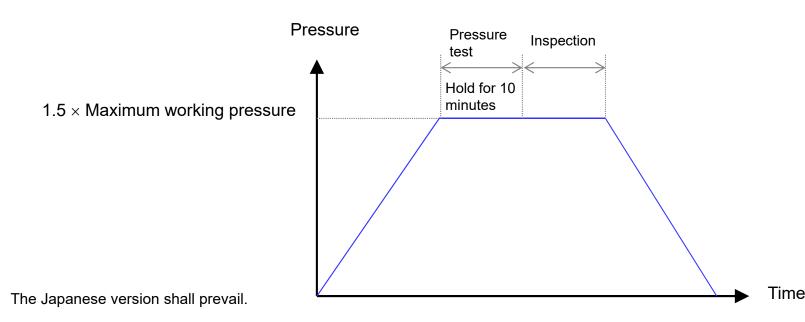
Polyethylene pipes will be assessed as satisfying the required structural strength as long as pipes conforming to ISO or JWWA standards are used within the scope of application. Pressure hoses and expansion joints will be assessed as satisfying the structural strength as long as they are used at pressures and temperatures within the range specified by the manufacturer.

(Implementation Plan: II-2-50-6)

		Allowable pressure [Max] (MPa)	Allowable temperature [Max] (°C)
Polyethylene pipe		1.00	40
Pressure hose		0.75	60
Expansion joint -	Circulation pipe Transfer pipe	1.00	80
	Seawater pipe	0.60	40

Applicable range of non-metallic pipes*

*:Detailed design of some equipment is in progress, and the values are not fixed. However, equipment that meets the maximum working pressure and temperature of the system will be adopted.


2-1(1) [5] Structure and strength of equipment, protection against natural phenomena such as earthquakes and tsunamis [2]-8. Structural strength assessment of other equipment (2/2)

Among pumps for which structural strength is not specified in the Rules on Design and Construction for Nuclear Power Plants, circulation pumps and ALPS treated water transfer pumps that are connected to Class 3 equipment, the hydraulic test specified by JIS^{*} must be performed to ensure that the pressure part of all pressure-holding components, including fasteners, has sufficient strength.

*: JIS B 8307 Technical Specifications for Centrifugal Pumps - Class II

Pump name	Maximum working pressure (MPa)	Pressure test factor	Test pressure (MPa)
Circulation pump	0.98	1.5	1.47
ALPS treated water transfer pump	0.98	1.5	1.47

The test is performed by the procedures shown below. If leakage is not detected visually after hydraulic pressure is held for at least 10 minutes, the pump will be judged to have sufficient strength.

2-1(1) [5] Structure and strength of equipment, protection against natural phenomena such as earthquakes and tsunamis [Reference] Basic specifications of circulation pipes/transfer pipes

And in case of the local division of the loc		A 100	-	
	and the second s			
2			-	
_	_			

Name	Specifications		Name	Specifications	
From the outlet of the measurement/ confirmation tank to the inlet of the circulation pump (Steel tube)	Nominal diameter/Thickness Material property Maximum working pressure Maximum working temperature	200A/Sch.20S SUS316LTP 0.49MPa 40°C	Between measurement/ confirmation tanks (Steel tube)	Nominal diameter/Thickness Material property Maximum working pressure Maximum working temperature	200A/Sch.20S SUS316LTP 0.49MPa 40°C
(Polyethylene pipe)	Nominal diameter Material property Maximum working pressure Maximum working temperature	Equivalent to 200 A Polyethylene 0.49MPa 40°C	(Polyethylene pipe)	Nominal diameter Material property Maximum working pressure Maximum working temperature	Equivalent to 200 A Polyethylene 0.49MPa 40°C
(Pressure hose)	Nominal diameter Material property Maximum working pressure Maximum working temperature	Equivalent to 200 A Synthetic rubber 0.49MPa 40°C	(Pressure hose)	Nominal diameter Material property Maximum working pressure Maximum working temperature	Equivalent to 200 A Synthetic rubber 0.49MPa 40°C
(Expansion joint)	Nominal diameter Material property Maximum working pressure Maximum working temperature	Equivalent to 200 A Synthetic rubber 0.49MPa 40°C	From the outlet of the measurement/ confirmation tank to the inlet of the ALPS	Nominal diameter/Thickness Material property Maximum working pressure Maximum working temperature	100A/Sch.20S 150A/Sch.20S SUS316LTP 0.49MPa 40°C
From the outlet of the circulation pump to the inlet of the measurement/	Nominal diameter/Thickness Material property	125A/Sch.20S 150A/Sch.20S 200A/Sch.20S SUS316LTP	treated water transfer pump (Steel tube)		
confirmation tank (Steel tube)	Maximum working pressure Maximum working temperature	0.98MPa 40⁰C	(Polyethylene pipe)	Nominal diameter	Equivalent to 100 A Equivalent to 150 A
(Polyethylene pipe)	Nominal diameter Material property Maximum working pressure	Equivalent to 150 A Polyethylene 0.98MPa		Material property Maximum working pressure Maximum working temperature	Polyethylene 0.49MPa 40°C
	Maximum working temperature 40°C		(Expansion joint)	Nominal diameter	Equivalent to 100 A Synthetic rubber 0.49MPa 40°C
(Expansion joint)	Nominal diameter Material property Maximum working pressure Maximum working temperature	Equivalent to 125 A Synthetic rubber 0.98MPa 40°C		Material property Maximum working pressure Maximum working temperature	

The Japanese version shall prevail.

2-1(1) [5] Structure and strength of equipment, protection against natural phenomena such as earthquakes and tsunamis [Reference] Basic specifications of transfer pipes/seawater pipes

and so its	-		-	
		_		
			-	

Name	Specifications		Name	Specifications		
From the outlet of the ALPS treated water transfer pump to the seawater pipe header inlet connection (Steel tube)	Nominal diameter/Thickness Material property Maximum working pressure Maximum working temperature	100A/Sch.40 STPG370 0.98MPa 40°C		From the outlet of the seawater transfer pump to the seawater pipe header inlet connection (Steel tube)	Nominal diameter/Thickness Material property Maximum working pressure Maximum working temperature	800A/12.7mm 900A/12.7mm STPY400 0.60MPa 40°C
(Steel tube)	100A/ 150A/ Material property SUS3	65A/Sch.20S 100A/Sch.20S 150A/Sch.20S SUS316LTP	100A/Sch.20S 150A/Sch.20S SUS316LTP 0.98MPa	(Steel tube)	Nominal diameter/Thickness Material property Maximum working pressure Maximum working temperature	900A/Sch.20S SUS329J4LTP 0.60MPa 40°C
				(Expansion joint)	Nominal diameter	Equivalent to 800A Equivalent to 900 A
(Polyethylene pipe)	Nominal diameter Material property Maximum working pressure	Equivalent to 100 A Polyethylene 0.98MPa			Material property Maximum working pressure Maximum working temperature	Synthetic rubber 0.60MPa 40°C
(Expansion joint)	Maximum working temperature Nominal diameter Material property Maximum working pressure Maximum working temperature	40°C Equivalent to 65 A Equivalent to 100 A Synthetic rubber 0.98MPa 40°C	_	Seawater pipe header (Steel tube)	Nominal diameter/Thickness Material property Maximum working pressure Maximum working temperature	900A/16mm 1800A/ <u>16</u> mm 2200A/16mm SM400B 0.60MPa 40°C
				From the outlet of the seawater pipe header to the <u>discharge end</u> (Steel tube)	Nominal diameter/Thickness Material property Maximum working pressure Maximum working temperature	1800A/ <u>16</u> mm SM400B 0.60MPa 40°C
				(Expansion joint)	Nominal diameter Material property Maximum working pressure	Equivalent to 1800 A Synthetic rubber 0.60MPa

The underlined part was corrected to optimize the description based on Chapter II 2.50 of the Implementation Plan. The Japanese version shall prevail.

40°C

Maximum working temperature

2-1(1) [5] Structure and strength of equipment, protection against natural phenomena such as earthquakes and tsunamis [Reference] Structural strength assessment of pipes

- Assessment results (Implementation Plan: II-2-50- Attachment 3-5)
 - > Table 1 shows the assessment results. Having required thickness, the pipes are evaluated as having sufficient structural strength.

Table-1 Results of structural strength assessment of main pipes (steel pip	es)

Equipment assessed [*]	Outer diameter (mm)	Material property	Maximum working pressure (MPa)	Maximum working temperature (°C)	Required thickness (mm)	Minimum thickness (mm)
Pipe [1]	216.3	SUS316LTP	0.49	40	0.46	5.68
Pipe [2]	139.8	SUS316LTP	0.98	40	0.59	4.37
Pipe [3]	165.2	SUS316LTP	0.98	40	0.69	4.37
Pipe [4]	216.3	SUS316LTP	0.98	40	0.91	5.68
Pipe [5]	165.2	SUS316LTP	0.49	40	0.35	4.37
Pipe [6]	114.3	SUS316LTP	0.49	40	0.24	3.50
Pipe [7]	76.3	SUS316LTP	0.98	40	0.32	3.00
Pipe [8]	114.3	SUS316LTP	0.98	40	0.48	3.50
Pipe [9]	114.3	STPG370	0.98	40	3.40	5.25
Pipe [10]	914.4	<u>SM400B</u>	0.60	40	4.56	<u>14.90</u>
Pipe [11]	2235.2	SM400B	0.60	40	11.14	<u>14.90</u>
Pipe [12]	1828.8	SM400B	0.60	40	9.11	<u>14.90</u>

*: Refer to the following pages for pipe numbers.

The pipes [10] and [11] and part of the pipe [12] make up the seawater pipe header.

2-1(1) [5] Structure and strength of equipment, protection against natural phenomena such as earthquakes and tsunamis [Reference] Pipes subject to the structural strength evaluations of ALPS treated water dilution/discharge facilities **T=PCO**

The following figure shows pipes to be evaluated.

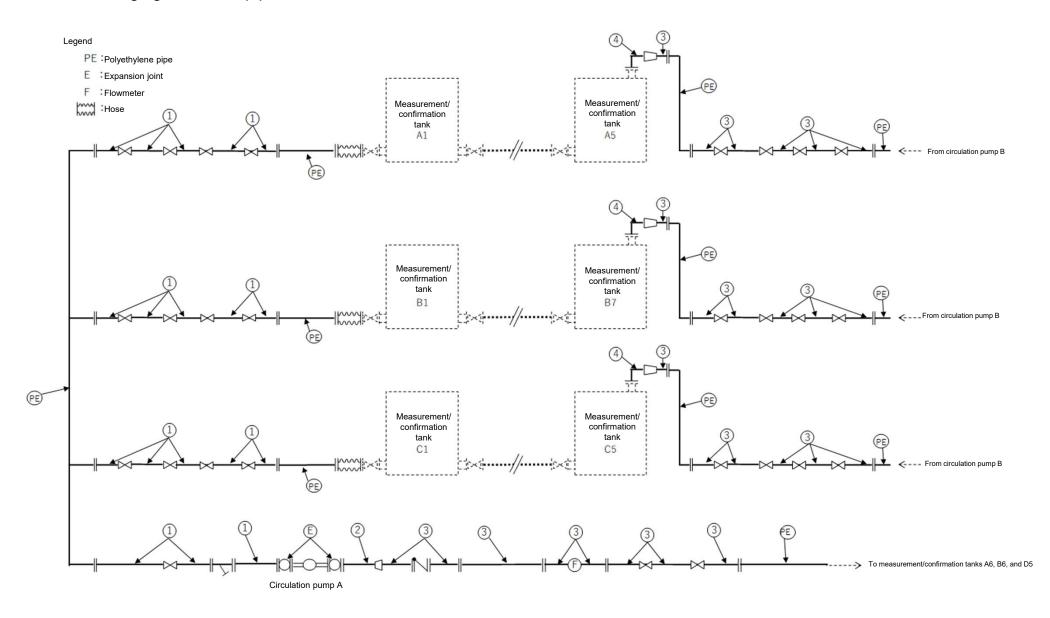


Figure-1 Piping diagram (1/5)

69

2-1(1) [5] Structure and strength of equipment, protection against natural phenomena such as earthquakes and tsunamis [Reference] Pipes subject to the structural strength evaluations of ALPS treated water dilution/discharge facilities **T=P(C)**

The following figure shows pipes to be evaluated.

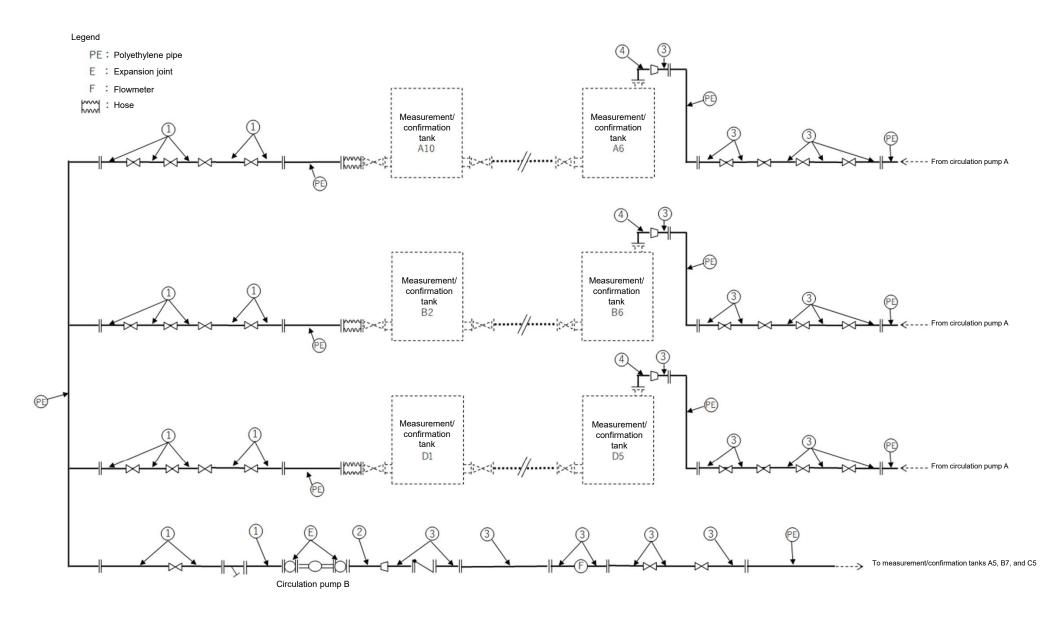


Figure-1 Piping diagram (2/5)

2-1(1) [5] Structure and strength of equipment, protection against natural phenomena such as earthquakes and tsunamis [Reference] Pipes subject to the structural strength evaluations of ALPS treated water dilution/discharge facilities **TEPCO**

The following figure shows pipes to be evaluated.

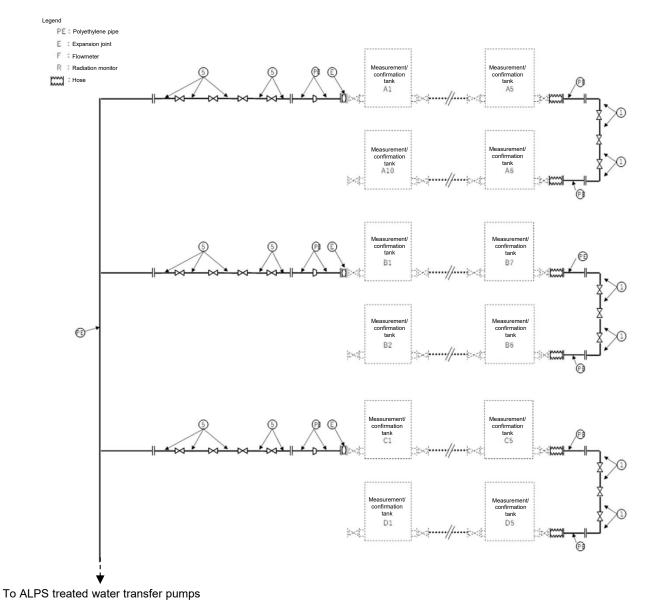


Figure-1 Piping diagram (3/5)

2-1(1) [5] Structure and strength of equipment, protection against natural phenomena such as earthquakes and tsunamis [Reference] Pipes subject to the structural strength evaluations of ALPS treated water dilution/discharge facilities **T=P(**

The following figure shows pipes to be evaluated.

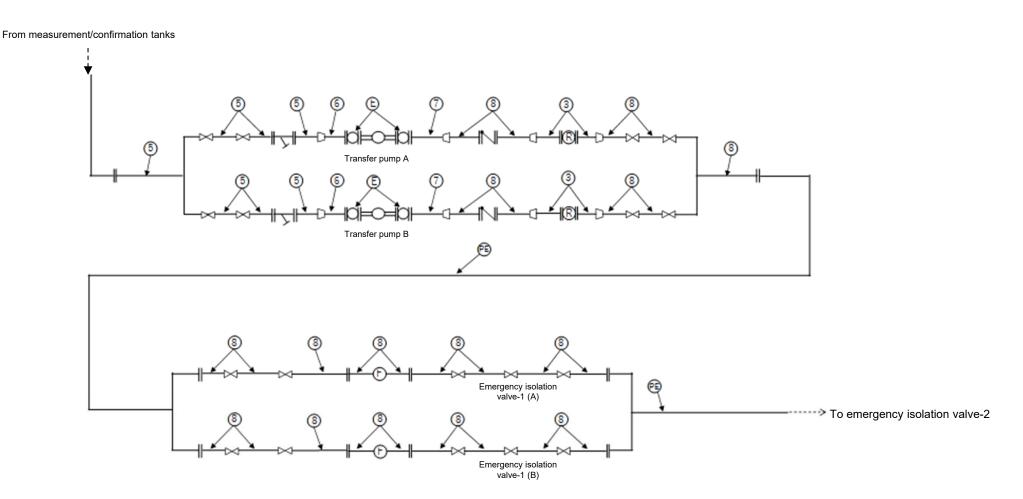


Figure-1 Piping diagram (4/5)

72

2-1(1) [5] Structure and strength of equipment, protection against natural phenomena such as earthquakes and tsunamis [Reference] Pipes subject to the structural strength evaluations of ALPS treated water dilution/discharge facilities **TEP**

The following figure shows pipes to be evaluated.

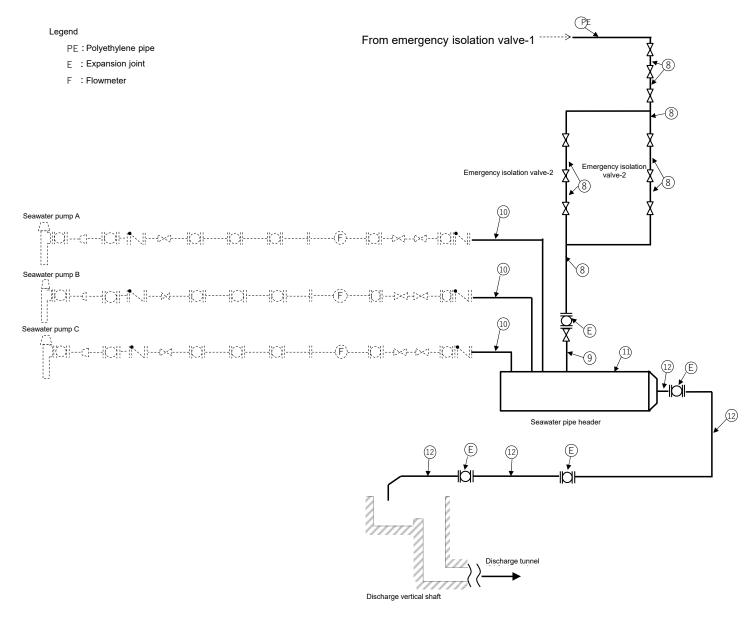


Figure-1 Piping diagram (5/5)

СО

Responses to issues pointed out* at the review meeting, etc.

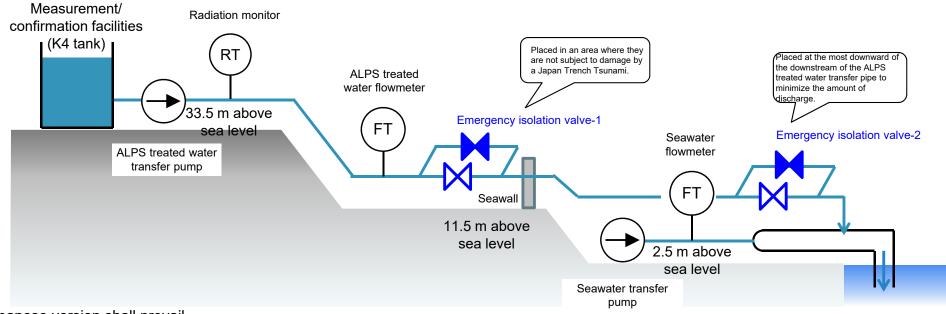
*: Documents 2-2, Attachment 2 for (the 97th) Specified Nuclear Facility Monitoring and Assessment Review Meeting

Issues pointed out [4]

(2-1 Major issues to be reviewed based on the Nuclear Reactor Regulation Act)

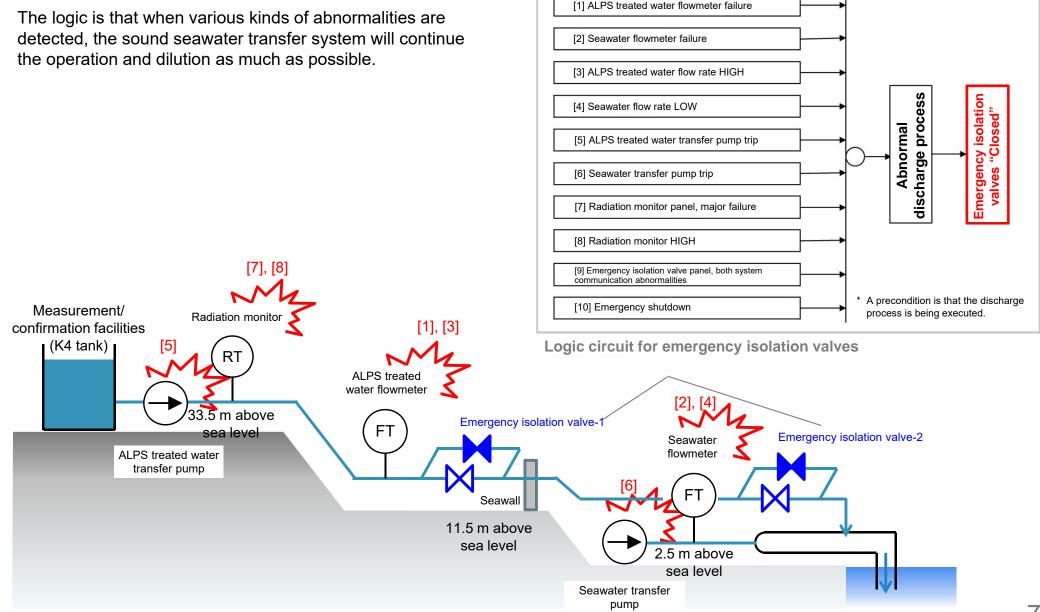
(1) Discharge Facilities of ALPS Treated Water into the Sea

[6] Validity assessment of the facility design in the event of failure


- Explain including entire scope (installation locations of MO valves) and the closing time, because there are many MO valves of the same type as the emergency isolation valve-1 (MO valve).
- In the event of a single failure of the driving source (compressed air), the emergency isolation valve-2 (AO valve) will close, in contrast, water will continue to flow in to the tank through the three-way valve. How to deal with this situation must be explained.

2-1 (1) [6] Validity assessment of the facility design in the event of failure[4]-1. Expected role and design of the emergency isolation valve

- The emergency isolation valves, which are installed in the ALPS treated water transfer line, have a function to stop the discharge of ALPS treated water into the sea by closing the valves without manual operation in the event of detecting an abnormality that deviates from normal operation.
- The emergency isolation valves has a design of dual-redundant in series. Their installation position, working methods, and design concept are as follows:

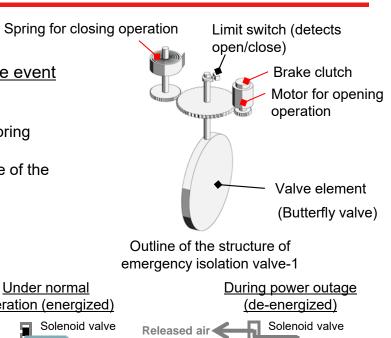

Design	Emergency isolation valve-1	Emergency isolation valve-2
Location of installation	Where not subject to damage by tsunami	At the most downward of the downstream of ALPS treated water transfer pipe to minimize the amount of discharge at the valve operation.
Operating system	Motor-operated (The closing motion needs 10 seconds)	Air operated (AO) (The closing motion needs 2 seconds)
Concept of design	Two systems are installed. The system to use can switch by opening or closing the valves the front or rear in the event of failures or maintenance to keep the facility availability.	(Same as on the left)

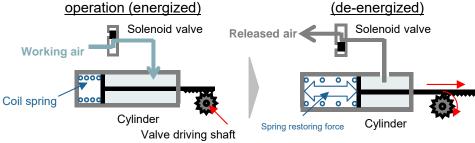
2-1 (1) [6] Validity assessment of the facility design in the event of failure [4]-2. Operating conditions of the emergency isolation valve

- The operating conditions under which the emergency isolation valve is "closed" are shown in the figure below, designed to prevent "unintentional discharge of ALPS treated water into the sea."
- The logic is that when various kinds of abnormalities are detected, the sound seawater transfer system will continue the operation and dilution as much as possible.

2-1 (1) [6] Validity assessment of the facility design in the event of failure [4]-3. Specifications for emergency isolation values

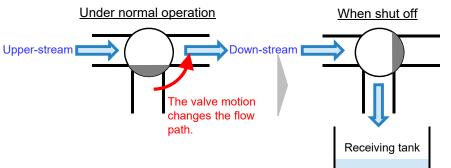
Document 1-1 (amended), the 10th Review Meeting on the Implementation Plan Regarding the Handling of ALPS Treated Water

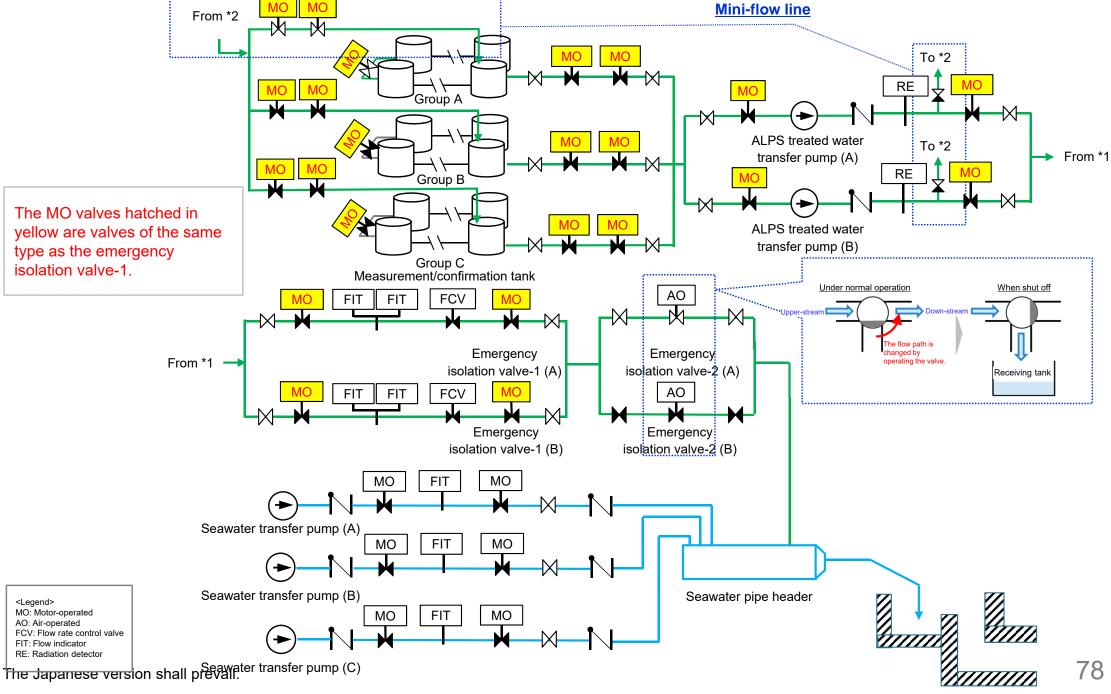

Emergency isolation valve-1 (MO valve)


- Spring return type motor-operated emergency isolation valve, which closes fully in the event of loss of power
- To fully open the valve, the motor will start up to wind the spring.
- Once the valve is opened fully, the built-in brake will be activated to keep the wound-up spring from moving back (under normal operation).
- With the loss of power, the brake will be released, and the valve will be closed by the force of the spring.
- Open \rightarrow Close: within 10 seconds
- Measures against water hammers
- Measures are taken in the mini-flow line at the ALPS treated water transfer pump outlet.

Emergency isolation valve-2 (AO valve)

- <u>Air-operated emergency isolation valve, which closes fully in the event</u> of loss of power
- The linear movement of the pressurized piston in the cylinder is converted into rotary motion (valve drive system).
- This valve has a coil spring in it, and when the solenoid valve of the working air is de-energized at the time of power outage, the air in the cylinder is released to move the piston.
- Open \rightarrow Close: about 2 seconds
- Measures against water hammers
- Since the emergency isolation valve-2 has a design featured to shut off the discharge as quickly as possible, countermeasures against water hammers is required. Therefore, a three-way valve is adopted.
- → The capacity of the receiving tank shall be approximately 1.1 m³ plus sufficient allowance, that is, the volume larger than the amount of water transferred when the emergency isolation valve-1 is closed and the amount contained in the pipe from the emergency isolation valve-1 to the emergency isolation valve-2.

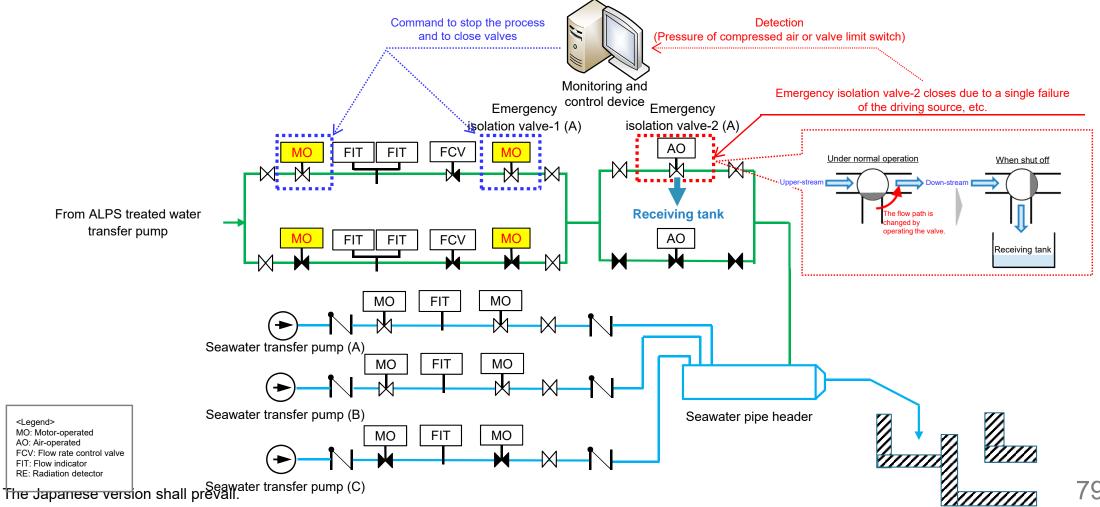

The Japanese version shall prevail.


The cylinder is filled with air to maintain the valve "Open."

Once the solenoid valve is de-energized, the air in the cylinder will be released, and the valve driving shaft will be moved by the restoring force of the spring.

77

2-1 (1) [6] Validity assessment of the facility design in the event of failure [Supplement] Fail-close valves in the transfer/dilution facilities



78

TEPCO

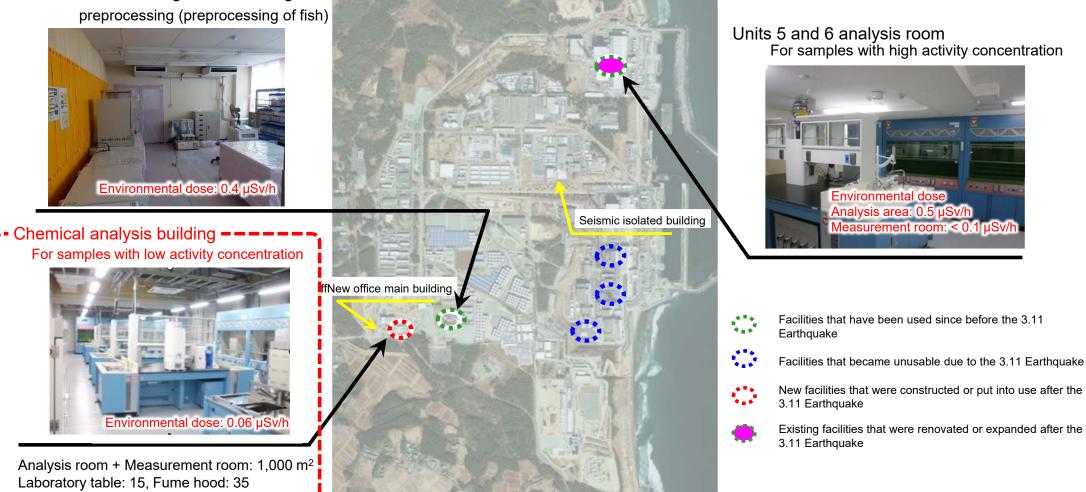
2-1 (1) [6] Validity assessment of the facility design in the event of failure [4]-4. How to deal with failure modes of emergency isolation valve-2

- The emergency isolation valve-2 is a three-way valve, and when it takes a closing motion caused by a single failure of the driving source (compressed air), or the like, water flows into the receiving tank. Besides, when a single failure of the driving source of the emergency isolation valve-2 occurs, a loss of pressure of the compressed air or a valve limit switch detects a malfunction and activate the alarm at the monitoring/control equipment following stopping the (transfer) process, closing the emergency isolation valve-1 and the other MO valves of the same type.
- This design will prevent ALPS treated water from keeping flowing into the receiving tank. In addition, ensuring leakage prevention, the receiving tank is provided with enough capacity with allowance take into account of such malfunctions.

TEPCO

Responses to issues pointed out* at the review meeting, etc.

*: Documents 2-2, Attachment 2 for (the 97th) Specified Nuclear Facility Monitoring and Assessment Review Meeting


Issues pointed out [5]

- (2-1 Major issues to be reviewed based on the Nuclear Reactor Regulation Act)
- (2) Safety measures at the time of discharge into the sea
 - [1] Analysis methods and systems for the radioactive concentration of nuclides in ALPS treated water
- The overall picture of analytical work must be explained, including required resources, details, time and frequency of analyses for conventional routine analyses that have been performed, analyses work of transient situations in emergencies, and the analysis of ALPS treated water, which will be added this time. Then, an explanation should be given on what role and impact the analysis of ALPS treated water will have in the overall analytical work and how the resources are secured.

2-1 (2) [1] Analysis methods and systems for the radioactive concentration of nuclides in ALPS treated water [5]-1. Analysis facilities involved **TEPCO**

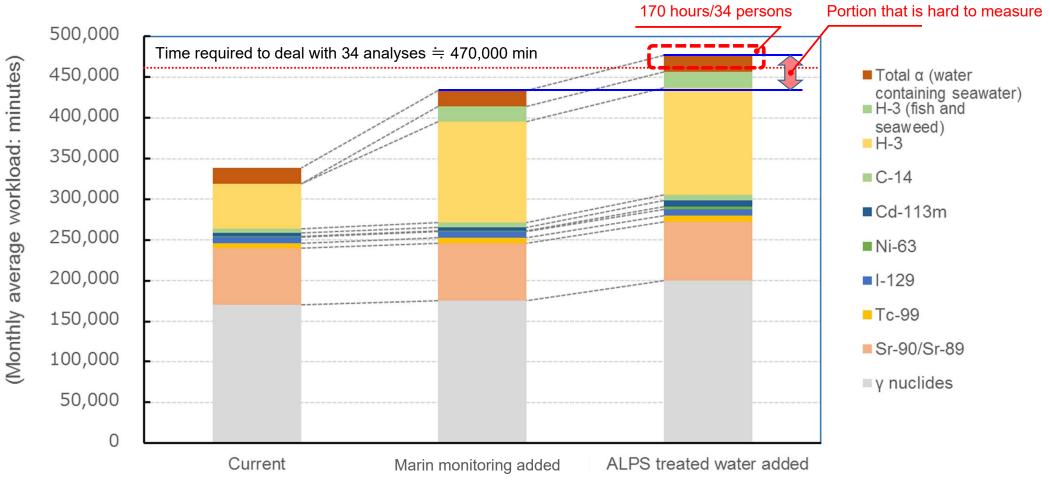
- The [chemical analysis building] will have to deal with an increased number of test samples as the discharge of ALPS treated water. After clarifying the resources required, plans for necessary measures will be developed.
- For liquid sample analyses at the time of trouble on site, such as leakage, will not involved in the chemical analysis building because the property and radioactivity of the liquid are unknown. Therefore, no need to keep resources for responding to troubles.

Environmental management building

2-1 (2) [1] Analysis methods and systems for the radioactive concentration of nuclides in ALPS treated water [5]-2. Resource management status **TEPCO**

- Overview of resources (analysts)
- The number of analysts to be allocated is adjusted as necessity depending on the number of test samples to avoid excess or deficiency.
- The maximum number of 34 analysts engage in analyzing concentration levels on low-level radioactive samples in a day-time-shift at the chemical analysis building.
- When even the maximum number of analysts fails to complete the analysis low-level radioactive samples, two analysts of the 5th and 6th analysis room move to the chemical analysis room in the night-time to continue the analyses.
- > Since the number of test samples is expected to increase, further efforts will be made to secure and foster analysts.
- > A system to have employees living in the Okuma Dormitory for Bachelors work as supervisors during nighttime will be established.

	Affiliation	Number of employees	Daytime on weekdays (Maximum)	Nonbusiness days	Nighttime	Remarks
Analyst	Chemical analysis building	34 analysts	34 analysts	5 analysts		Day shift only signed to chemical analysis
Analyst	Units 5 and 6 analysis room	59 analysts	37 analysts	21 analysts ^{*1}		ilding to take over analyses ring nighttime Shiftwork and day shift
Supervisor	Chemical Analysis & Evaluation Group	15 analysts	15 analysts	2 analysts	0 analysts (7 analysts ^{*2})	Day shift only


*1: Total number of employees *2: Night shift staff are appointed

2-1 (2) [1] Analysis methods and systems for the radioactive concentration of nuclides in ALPS treated water [5]-3. Prospects of analytical work

Determining the time required for work

Т

- Working status for analyzing appears by the total number of hours to analyze low-level radioactivity concentrations in total workload, including the measurement time.
- > The measurement time includes waiting time, which makes up approximately 30% of the working hours.
- Including measurement of the 64 nuclides in ALPS treated water subject to discharge, there exists a gap of 170 hours a month. These gap can be filled through improvement of the competence of the analysts and organization of simultaneous work before the start of the discharge.

83

2-1 (2) [1] Analysis methods and systems for the radioactive concentration of nuclides in ALPS treated water [5]-4. Identifying the competence of workers

- Approach to enhance competence
- Visualize the competence of 34 employees working in the chemical analysis building and 2 employees in the units 5 and 6 analysis room.
- The table below shows the visualized competences and the competence rate will have been improved before the discharge of ALPS treated water.

Nuclide Worker	Ni-63	Cd-113m	C-14	Тс-99	I-129	Sr-90	Nuclide Worker	Ni-63	Cd-113m	C-14	Тс-99	l-129	Sr-90
1	0	0	0	0	0	0	19			0	0	0	
2	0	0	0	0	0	0	20			0			0
3	0	0	0		0	0	21						
4	0	0	0	0	0	0	22						
5	0	0	0	0	0	0	23						0
6	0	0	0	0	0	0	24	0	0				
7	0	0	0	0	0	0	25	0	0	0	0	0	
8	0	0		0	0	0	26	0	0	0	0	0	0
9		0		0	0	0	27			0	0	0	
10	0	0	0		0	0	28		0	0	0	0	
11			0			0	29			0	0	0	
12			0			0	30			0	0	0	
13			0			0	31			0	0	0	
14			0			0	32			0	0	0	
15			0				33			0	0	0	
16			0			0	34			0	0	0	
17			0			0	35	0	0				
18			0				36						0
							Number of competent persons	13	15	28	19	21	20

2-1 (2) [1] Analysis methods and systems for the radioactive concentration of nuclides in ALPS treated water [5]-5. Identifying the required work

- Consideration of simultaneous work
- Studying a highly effective method for simultaneous work to adapt, and allocate analysts to optimize their skills aiming aiming at effective analyses.
- In addition, to shorten the time required to obtain values necessary for making discharge go/no-go decisions, efforts will be made to streamline procedures for off-site transport.

86

2-1 (2) [1] Analysis methods and systems for the radioactive concentration of nuclides in ALPS treated water [5]-6. Further Efficiency Promotion **TEPCO**

- Expansion of the functions of the chemical analysis building
- Equipment in preprocessing and measurement areas is planned to be added with anticipation for an increase in the number of objects to be measured in view. Once the construction of facilities completes, work efficiency will be increased enough to carry out the analyses with the planned workers, leaving excess capacity.

[Preprocessing area]

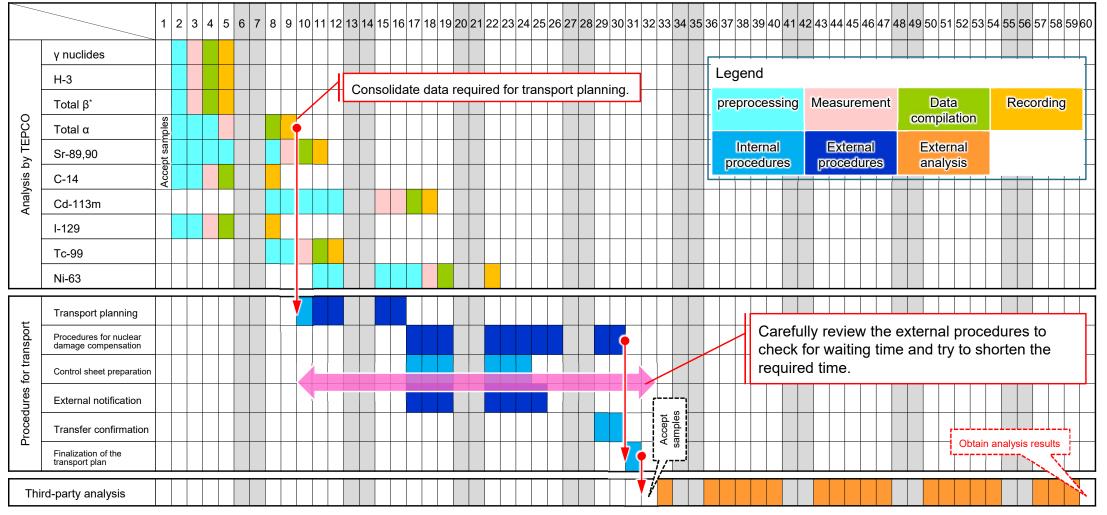
	Target	Measurement target	Expansion scale (Maximum number of samples per year)	preprocessing facility (planned number of units)		
		H-3	156	Fume hood Rotary evaporator Electrolytic concentrator	4 5 4	
		I-129	8	Laboratory table	2	
	Seawater	C-14	20	Fume hood	7	
		γ nuclides (including Sn-126)	12	Fume hood Laboratory table	4 2	
		α nuclides	12			
		Sr-90	12	Laboratory table	1	
	Seabed sediment	Sn-126	20	Fume hood	4	
	Fishes	C-14	1	Fume hood	6	
	FISHES	Sn-126	1	Laboratory table	3	
		C-14	2	Freezing dryer	6	
The	Seaweeds	Sn-126 rsion shall prevail.	2	Electrolytic concentrator H-3 attenuation vessel	6 2	

[Measurement area]

	/ [
Measurement target	Measuring equipment (planned number of units)			
H-3	LSC ^{*1}	3		
C-14	He-MS ^{*2}	2		
γ nuclides (including Sn-126)	Ge (LEPS ^{*3})	2		

LSC: 11 -> 14 units

*1: LSC: Low background liquid scintillation counter


*2: He-MS: Noble gas mass spectrometer for the measurement of H-3

*3: LEPS: High purity Ge semiconductor detector for low energy photons

- The current area of about 1,500 m² will be expanded by about 600 m² to about 2,100 m².
- The number of analyzers needed may change depending on monitoring plans and the detailed design of equipment.
- The completement of the construction work is scheduled by the end of FY 2023.

2-1 (2) [1] Analysis methods and systems for the radioactive concentration of nuclides in ALPS treated water [5]-6. Further Efficiency Promotion **TEPCO**

- Time-saving for measurement/confirmation facility
- In the treated water verification process before discharge, analyses by a third-party organization are performed to verify the values measured by TEPCO, which takes about 2 months to obtain the analysis results.
- The process will be reviewed carefully to shorten the required time without affecting the analyses of ALPS treated water to be discharged.

The standing to the standystand drainage water.

Responses to issues pointed out* at the review meeting, etc.

*: Documents 2-2, Attachment 2 for (the 97th) Specified Nuclear Facility Monitoring and Assessment Review Meeting

Issues pointed out [6]

(2-1 Major issues to be reviewed based on the Nuclear Reactor Regulation Act)

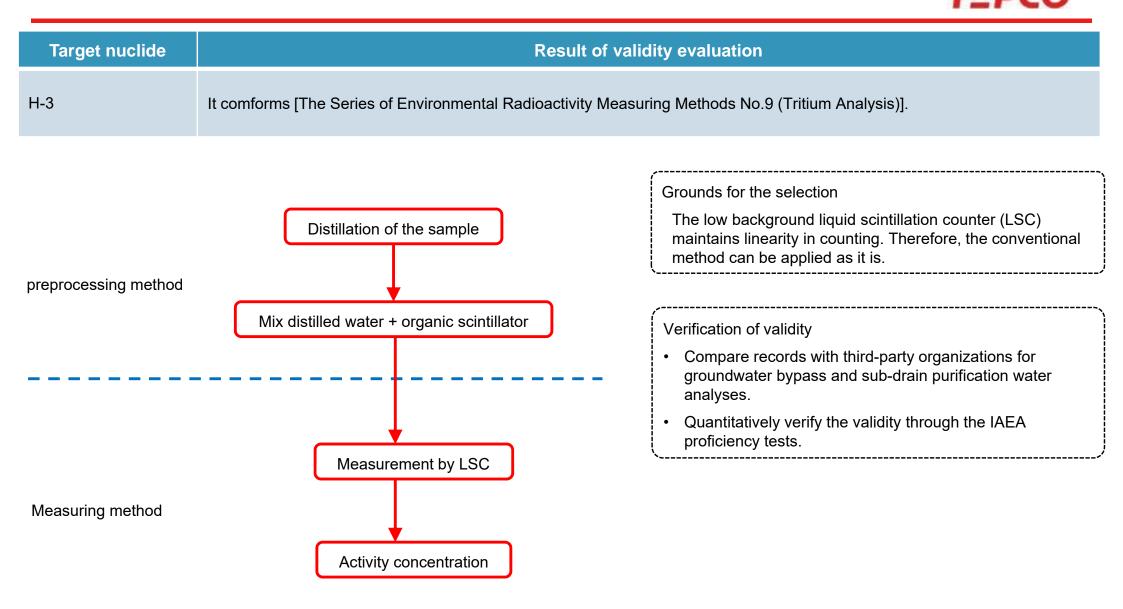
(2) Safety measures at the time of discharge into the sea

[1] Analysis methods and systems for the radioactive concentration of nuclides in ALPS treated water

• Explane the analytical methods, applicable methods to be adopted this time, reasons and grounds for adopting these methods, etc.

2-1 (2) [1] Analysis methods and systems for the radioactive concentration of nuclides in ALPS treated water [6]-1. Application of analysis methods

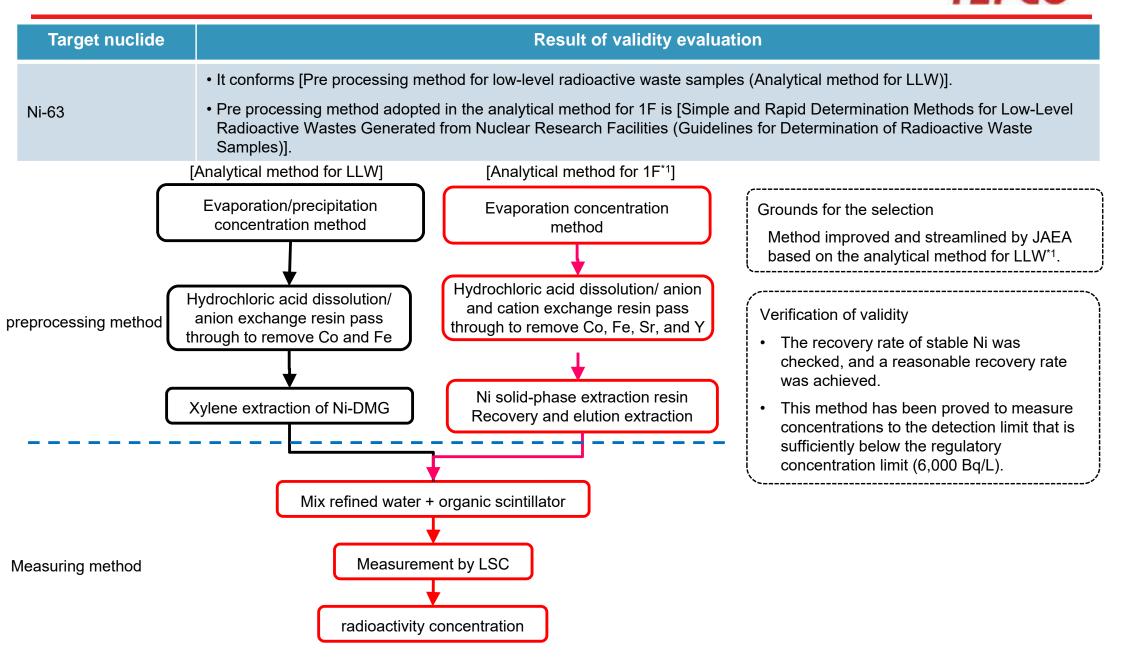
- The analytical methods to be adopted for the analyses of ALPS treated water are the methods that have been widely used (for γ-ray emitting nuclides, etc.) and those developed by JAEA for determining radio activity concentrations of waste from the power plants and the research facilities, focusing on the change of target nuclides in the cooling water caused by contact the fuel debris emerged after the 3.11 earthquake.
- As regards preprocessing methods that have been changed or newly adopted after the earthquake, it needs to be verified that the analyses are performed in an intended manner and the result obtained are appropriate values.



When changing preprocessing methods or adopting a new method, the source of each method must be carefully examined to verify that the methods are available to the analyses of ALPS treated water.

Examine if a newly adopted methods can perform preprocessing and has a expected accuracy function using a standard radiation source and from the RI addition test results to ensure that it can perform Pre processing and obtain values of expected accuracy. The Japanese version shall prevail. 2-1 (2) [1] Analysis methods and systems for the radioactive concentration of nuclides in ALPS treated water [6]-2. Validity evaluation of analytical methods for ALPS treated water (1/9)

Target nuclide	Result of validity evaluation					
γ-ray emitting nuclides	Conforming [The Series of Environmental Radioactivity Measuring Methods No.7 (Gamma-ray Spectrometry using Germanium Detector)].					
preprocessing method	Filling sample (Marinelli container) Grounds for the selection Since the radioactivity concentration is low, it is unnecessary to consider methods that deviate from conventional methods. Verification of validity Verification of validity • Compare records with third-party organizations for groundwater bypass and sub-drain purification water analyses. • Quantitatively verify the validity through the IAEA proficiency tests.					
Measuring method	Measurement with Ge semiconductor detector radioactivity concentration					


2-1 (2) [1] Analysis methods and systems for the radioactive concentration of nuclides in ALPS treated water [6]-2. Validity evaluation of analytical methods for ALPS treated water (2/9)

2-1 (2) [1] Analysis methods and systems for the radioactive concentration of nuclides in ALPS treated water [6]-2. Validity evaluation of analytical methods for ALPS treated water (3/9)

Target nuclide	Result of validity evaluation					
C-14	 It conforms [Pre processing method for low-level radioactive waste samples (Analytical method for LLW)^{*1}]. It conforms [The Series of Environmental Radioactivity Measuring Methods No.25 (Radiocarbon Analysis)]. 					
Radioacti	in the Series of Environmental vity Measuring Methods] [Analytical method for LLW] ion (by heating) of samples Wet oxidation of samples CO ₂ absorption into absorbing solution Mix distilled water + organic scintillator					
Measuring method	Measurement by LSC Activity concentration					

2-1 (2) [1] Analysis methods and systems for the radioactive concentration of nuclides in ALPS treated water [6]-2. Validity evaluation of analytical methods for ALPS treated water (4/9) ΤΞΡϹΟ

*1: [1] Simple and Rapid Determination Methods for Low-Level Radioactive Wastes Generated from Nuclear Research Facilities (Guidelines for Determination of Radioactive Waste Samples), JAEA-Technology 2009-051

The 2 analysis for the Atomic Energy Society of Japan, Vol. 10, No. 3, p. 216 -225 (2011)

2-1 (2) [1] Analysis methods and systems for the radioactive concentration of nuclides in ALPS treated water [6]-2. Validity evaluation of analytical methods for ALPS treated water (5/9)

Target nuclide	Result of validity evaluation						
Cd-113m	It complies with [the Determination method using liquid sci Power Plant].	ntillation counter for ^{113m} Cd in wastewater in Fukushima-1 Nuclear					
preprocessing method	[Analytical method for 1F ^{*1}] Evaporation concentration Form Cd-chloro complexes using hydrochloric acid Make the liquid pass through anion exchange resin to filter out other radionuclides and elute with nitric acid	 Grounds for the selection A method was developed for 1F as no existing method. A determination method that combines a preprocessing method based on a publicly known Cd concentration determination method adopted for pollution analyses and the radioactivity measurement using LSC. Verification of validity Having a reasonable stable Cd recovery rate, this method can be applied to the analyses of ALPS treated water. 					
Measuring method	Mix refined water + organic scintillator Measurement by LSC radioactivity concentration	 Since obtaining a Cd-113m source is difficult, the radioactivity concentration is calculated using the C-14 counting efficiency, which is lower in energy than Cd-113 m (conservative evaluation). 					

*1: "Determination method using liquid scintillation counter for ^{113m}Cd in wastewater in Fukushima-1 Nuclear Power Plant] The Blaparese Kverston stall pp.345-350 (2014) 2-1 (2) [1] Analysis methods and systems for the radioactive concentration of nuclides in ALPS treated water [6]-2. Validity evaluation of analytical methods for ALPS treated water (6/9)

Target nuclide	Result of validity evaluation					
I-129	It complies with [The Series of Environmental Radioactivity Measuring Methods No.32 (Rapid Analytical Method for Iodine 129 in Environmental Samples)].					
	[Method listed in the Series of Environmental Radioactivity Measuring Methods]	 Grounds for the selection It is a method listed in the Series of Environmental Radioactivity Measuring Methods. 				
preprocessing method	Dispense and dilute the sample	The recent improvements in the function of coupled plasma spectrometers (ICP-MS) eliminates the need for concentration in the preprocessing.				
		Verification of validity It has been confirmed that an increase in the background due to Xe-129 contained in Ar gas can be restricted satisfactorily without concentration.				
Measuring method	Measurement by ICP-MS Activity concentration	`/				

2-1 (2) [1] Analysis methods and systems for the radioactive concentration of nuclides in ALPS treated water [6]-2. Validity evaluation of analytical methods for ALPS treated water (7/9)

Target nuclide	Result of validity evaluation						
Tc-99	It complies with [the Analytical method for LLW].						
preprocessing method	[Analytical method for LLW] Dispense and dilute the sample	Grounds for the selection The analytical method for LLW has a good track record of measuring low-level radioactive concentrations. Therefore, it can be applied to ALPS treated water as it is. Verification of validity This method has been proved to measure concentrations to the detection limit that is sufficiently below the regulatory concentration limit (1,000 Bq/L).					
Measuring method	Measurement by ICP-MS Activity concentration						

2-1 (2) [1] Analysis methods and systems for the radioactive concentration of nuclides in ALPS treated water [6]-2. Validity evaluation of analytical methods for ALPS treated water (8/9)

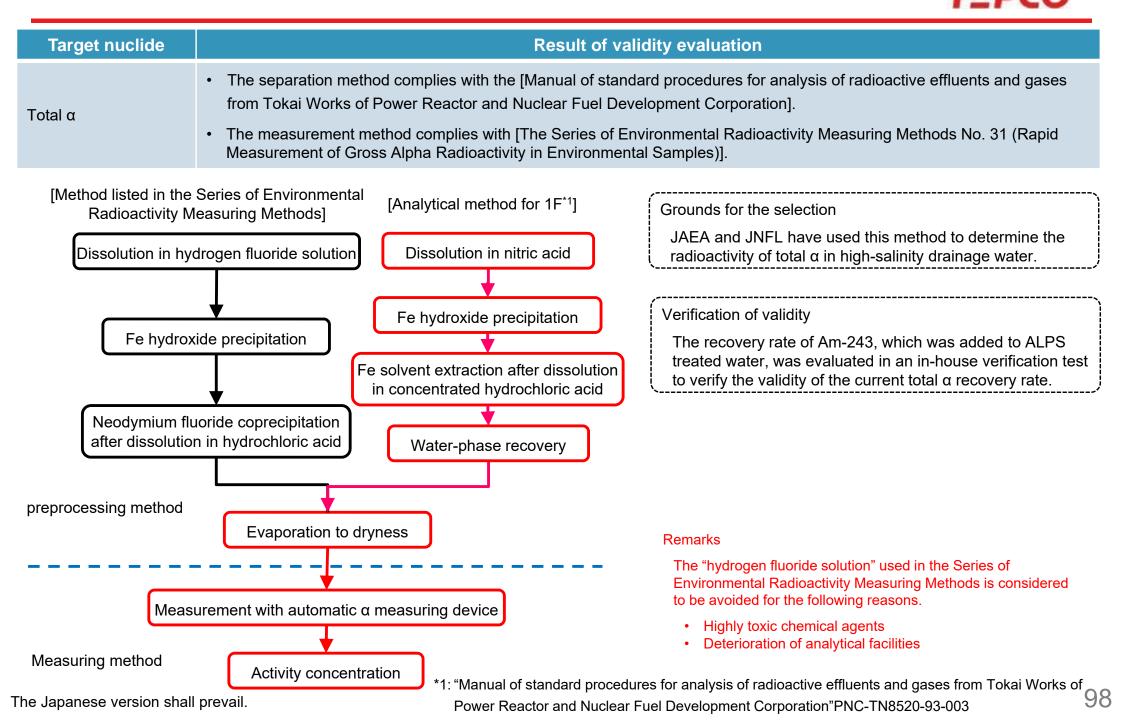
Target nuclide	Result of validity evaluation						
Sr-89, Sr-90	 The Sr resin concentration is adopted as Sr pre-concentration method. Pre processing method (Sr carbonate precipitation) complies with [The Series of Environmental Radioactivity Measuring Methods No.2 (Radio-strontium Analysis)]. A measurement method listed in the [Nuclear Safety Commission Guidelines] was adopted. 						
	he Series of Environmental Measuring Methods] [Analytical method for 1F ^{*1}] [Analytical method for 1F ^{*1}]						
preprocessing method	Sr carbonate precipitation Sr carbonate precipitation Sr carbonate precipitation Sr carbonate precipitation Sr carbonate precipitation Sr carbonate precipitation Sr carbonate precipitation						

Measurement with β

nuclide analyzer

radioactivity concentration

- Having been proved to achieve a reasonable recovery rate of stable Sr, the Sr resin concentration can be applied to the analyses of ALPS treated water.
- The measurement method was verified using a standard source at the time of delivery by the equipment manufacturer and proved to be capable of measuring concentrations to the detection limits that are sufficiently below the regulatory concentration limits (Sr-89: 300 Bq/L, Sr-90: 30 Bq/L).


Measurement with a low

background 2π gas flow counter

radioactivity concentration

Measuring method

2-1 (2) [1] Analysis methods and systems for the radioactive concentration of nuclides in ALPS treated water [6]-2. Validity evaluation of analytical methods for ALPS treated water (9/9)

Responses to issues pointed out* at the review meeting, etc.

*: Documents 2-2, Attachment 2 for (the 97th) Specified Nuclear Facility Monitoring and Assessment Review Meeting

Issues pointed out [7]

(2-1 Major issues to be reviewed based on the Nuclear Reactor Regulation Act)

- (2) Safety measures at the time of discharge into the sea
 - [1] Analysis methods and systems for the radioactive concentration of nuclides in ALPS treated water
- <u>Uncertainties in analysis results must be clearly defined, and the approach used in the uncertainty assessment must be explained, including the concept.</u>

2-1 (2) [1] Analysis methods and systems for the radioactive concentration of nuclides in ALPS treated water [7]-1. Application of uncertainty assessment **TEPCO**

- The analytical methods to be adopted for the analyses of ALPS treated water are the methods that have been widely used (for γ-ray emitting nuclides, etc.) and those developed by JAEA for determining radioactivity concentrations of waste from the power plants and the research facilities, focusing on the change of target nuclides in the cooling water caused by contact the fuel debris emerged after the 3.11 earthquake.
- As regards preprocessing methods that have been changed or newly adopted after the earthquake, it needs to be verified that the analyses are performed in an intended manner and the result obtained are appropriate values.

- Values obtained through the analyses of ALPS treated water will serve as information to control the discharge operation of treated water and assess impacts to the environment. Therefore, to clarify the degree of variation among the analysis values is necessary before they are used for the control and assessment.
- The degree of variation is generally quantified as "expanded uncertainty," in which various characteristics of the analysis process, such as sample dispensing volume, calibration and working environment of analysis devices and equipment, and preprocessing, are identified and assessed in numerical values (error bar).

Process to assess uncertainties of measurements^{*1}

Step 1) Develop a measurement model.

Clarify the relationship between the measured amount (activity concentration) and its input quantities (count, sample quantity, correction coefficient, etc.) on which the measured depends.

Step 2) Identify uncertainty sources.

Clarify the measurement procedure and create a list of possible uncertainty sources (fishbone diagram and source summary table).

Step 3) Quantify uncertainty components.

Estimate the magnitude of uncertainty components associated with the identified potential sources using budget sheets.

Step 4) Calculate combined standard uncertainty.

Express the magnitude of the contribution of each source to the uncertainty in the standard deviation, and calculate the combined standard uncertainty according to general rules.

Step 5) Calculate expanded uncertainty.

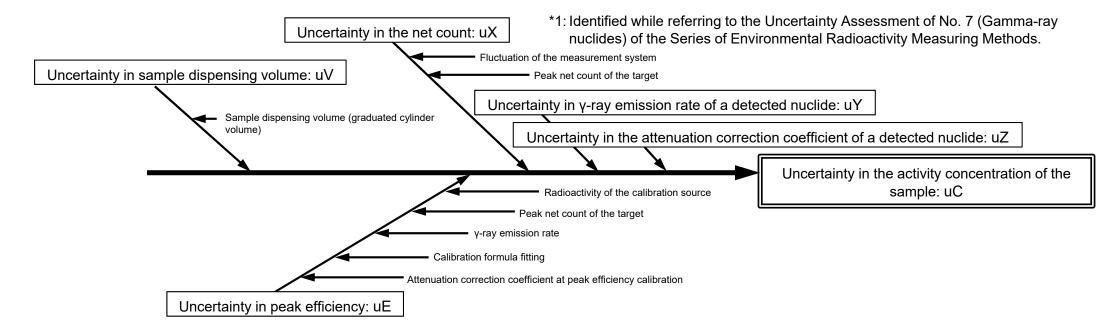
Calculate the expanded uncertainty by multiplying the combined standard uncertainty by the coverage factor k and adding it to the measured results.

*1: Refer to Quantifying Uncertainty in Analytical Measurement translated by Chushiro YONEZAWA (Maruzen). Original book: Quantifying Uncertainty in Analytical Measurement (Third Edition); EURACHEM/CITAC Guide CG4

Step 1) Develop a measurement model.

Clarify the relationship between the measured (activity concentration) and input quantities (count, sample quantity, correction coefficient, etc.) on which the measured depends.

In the measurement of γ-ray emitting nuclides using a Ge semiconductor detector, the activity concentration is expressed by the function of the following input quantities.


$$C_{\gamma} = f(x_1, x_2 \dots) = f(X, Y, Z, E, V) = \frac{X \times Z}{(E/100) \times (Y/100) \times V}$$

 $f(x_1, x_2 \dots)$: function for determining the activity concentration X, Y, Z, E, V: input quantities required to determine the activity concentration

Cγ	;	Activity concentration of γ-ray emitting nuclides (Bq/L)	E	,	Peak efficiency of γ-ray of the relevant energy (%)
X	;	The net counting rate of the sample of the relevant peak (cps)	Y	;	The emission rate of $\gamma\text{-ray}$ of the relevant energy (%) of the nuclide
Ζ	;	Half-life correction coefficient (-)	V	;	Sample dispensing volume (L)

Step 2) Identify uncertainty sources.

Clarify the measurement procedure and create a list of possible uncertainty sources (fishbone diagram^{*1} and summary table).

Major sources	Symbol	Breakdown of sources		
Sample dispensing volume	uV	Sample dispensing volume (graduated cylinder volume)		
Peak efficiency	uE	Radioactivity of the calibration source, peak net count of the calibration source, γ-ray emission rate of the calibration source Calibration formula fitting, attenuation correction coefficient at peak efficiency calibration		
Net count	uX	Fluctuation of the measurement system, peak net count of the target		
γ-ray emission rate	uY	γ-ray emission rate of the detected nuclide		
Attenuation correction coefficient	uΖ	Half-life		
u reters to the standard uncertainty (standard deviation) of each source.				

Step 3) Quantify uncertainty components.

Quantitatively evaluate the identified uncertainty source using Type A and Type B methods.

Type A: A method in which measurements are performed repeatedly to actually obtain data, and the standard deviation is determined from the variation of the data.

Type B: A method of determining the standard deviation using an approach other than Type A.

> Determine the standard deviation from available information, such as literature, the standard value specified by the manufacturer, calibration certificate, etc.

(Example) Uncertainty of sample dispensing volume: u_V

The uncertainty of sample dispensing volume is calculated by two evaluation methods: Type A, a method of repetitive measurement, and Type B, a method based on the standard value specified by the manufacturer.

Major sources	Uncertainty source	Uncertainty abbreviation	Туре	Method to assess uncertainties
Uncertainty in sample		u_V	-	$u_{V} = \sqrt{u_{V1}^2 + u_{V2}^2}$
dispensing volume	Dispensing volume of the test sample	u_{V1}	В	Calculated based on specifications by the manufacturer.
	(Graduated cylinder) measured value	u_{V2}	A	Standard deviation of repeated measurements.

Step 4) Calculate combined standard uncertainty.

The standard uncertainties obtained in steps up to 3 are combined by the law of propagation of uncertainties to determine the standard uncertainty of a measured result.

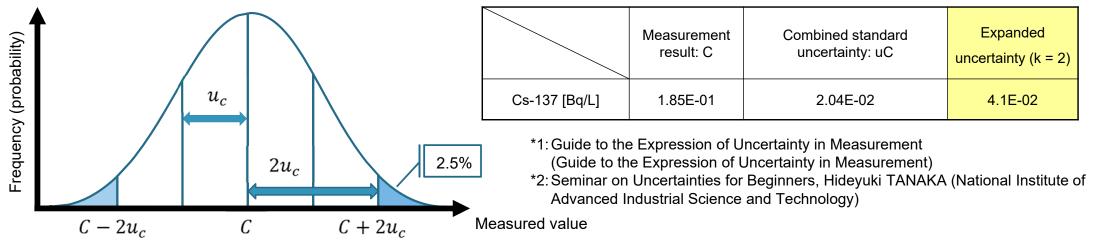
<Law of propagation of uncertainties>

$$u_{c} = \sqrt{\sum_{i=1}^{n} \left\{ \frac{\partial f}{\partial x_{i}} u(x_{i}) \right\}^{2}}$$

$$u_{c}: \text{ Combined standard uncertainty of activity concentration}$$

$$u(x_{i}): \text{ Standard uncertainties of input quantities } x_{1}, x_{2}, \cdots, x_{n}$$

- For example, the standard uncertainties obtained in steps up to 3 are combined by the law of propagation of uncertainties to evaluate γ-ray emitting nuclides.
- > The combined standard uncertainty is calculated as follows.

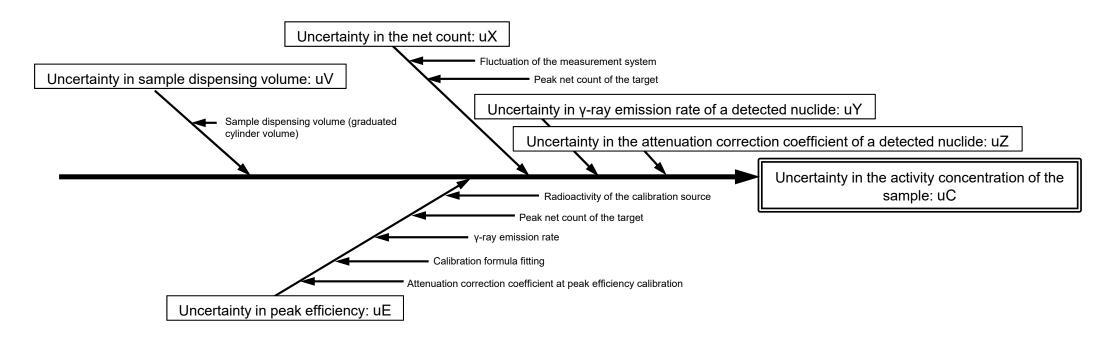

$$u_{\gamma} = \sqrt{\left(\frac{\partial f}{\partial V}u_{V}\right)^{2} + \left(\frac{\partial f}{\partial E}u_{E}\right)^{2} + \left(\frac{\partial f}{\partial X}u_{X}\right)^{2} + \left(\frac{\partial f}{\partial Y}u_{Y}\right)^{2} + \left(\frac{\partial f}{\partial Z}u_{Z}\right)^{2}}$$

 u_{γ} : Combined standard uncertainty of activity concentration of γ -ray emitting nuclides

Step 5) Calculate expanded uncertainty.

Multiply the combined standard uncertainty by the coverage factor "k" to determine the expanded uncertainty, and add it to the measured results (UC = $k \times u_c$).

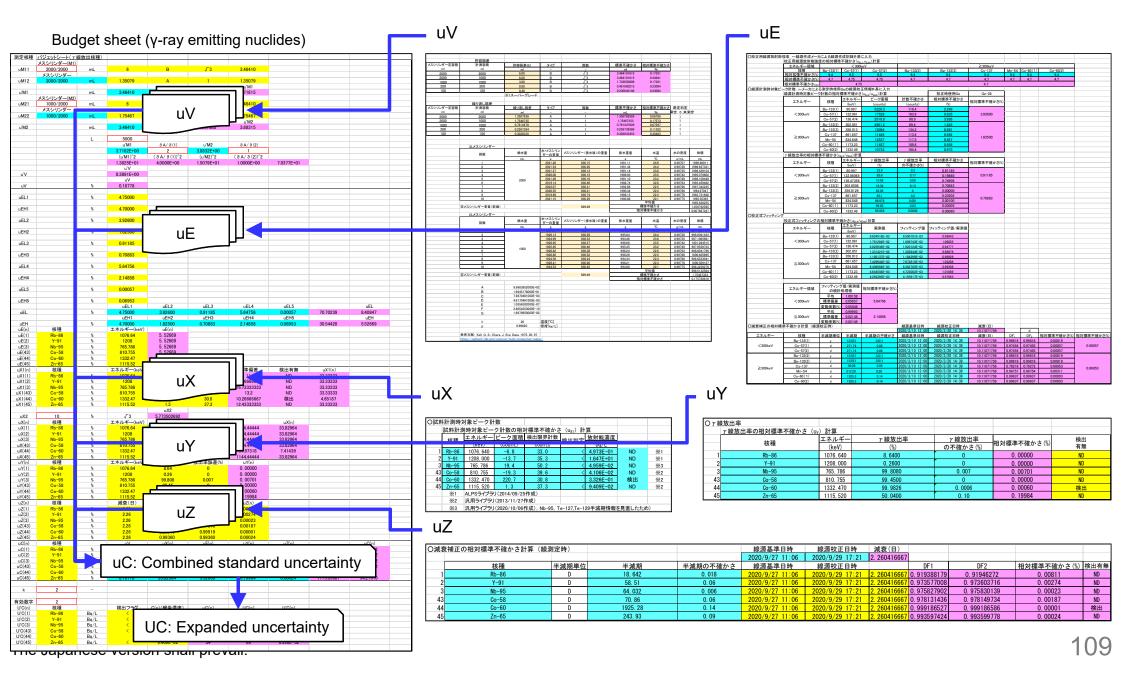
- The coverage factor is a factor reflecting the confidence level. If there is no specific requirement regarding the level of confidence, k = 2 is used, and if so, an appropriate coverage factor is used (GUM^{*1}).
- When a measured result is assumed to follow a normal distribution and k = 2 is used, the confidence probability is about 95%. (Results of controlled measurements generally follow a normal distribution.*2)
- When a measured result is C and an expanded uncertainty of UC = 2u_c is obtained, the result potentially varies within the interval from C-U to C+U at a probability of about 95% (confidence level of about 68% where k = 1, and about 99.7% where k = 3).
- When k is 1, the confidence level is low, about 68%. Therefore, the expanded uncertainty is reported using "k = 2," a generally adopted value.



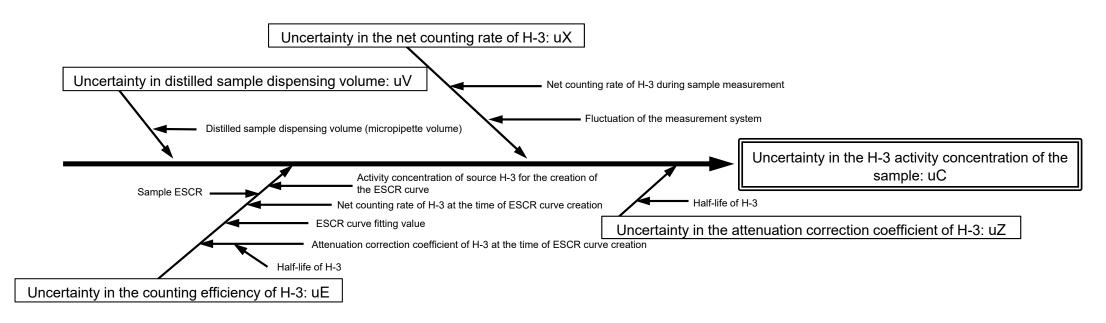
- Method to assess uncertainties of analytical methods for ALPS treated water
- The uncertainty sources identified regarding analytical methods for ALPS treated water and assessment results are shown on the following pages.
- Uncertainties in radioactivity measurements (Ge semiconductor detector, LSC, α automatic measuring device, etc.) were assessed while referring to the Uncertainties Assessed of No.7 (Gamma-ray nuclides) of the Series of Environmental Radioactivity Measuring Methods.
- The uncertainties of measurements by ICP-MS (I-129, Tc-99) were assessed while referring to the assessment of uncertainties of analytical methods using ICP-MS calibration curves for general metals^{*1}.
- Assessment of uncertainties in the measurements of undetected nuclides
- Measured or evaluated values of undetected nuclides are smaller than the detection lower limits (between 0 and detection lower limit). Therefore, the measured values were assumed to be close to the detection limit to control the discharge conservatively.
- > The assessment was performed with the detection lower limit.

^{*1:} JNLA Guidelines for Estimation of Uncertainties Registration Category: Leaching Performance Test First Edition (National Institute of Technology and Evaluation)

2-1 (2) [1] Analysis methods and systems for the radioactive concentration of nuclides in ALPS treated water [7]-3.1. Method to assess uncertainties (1/10)

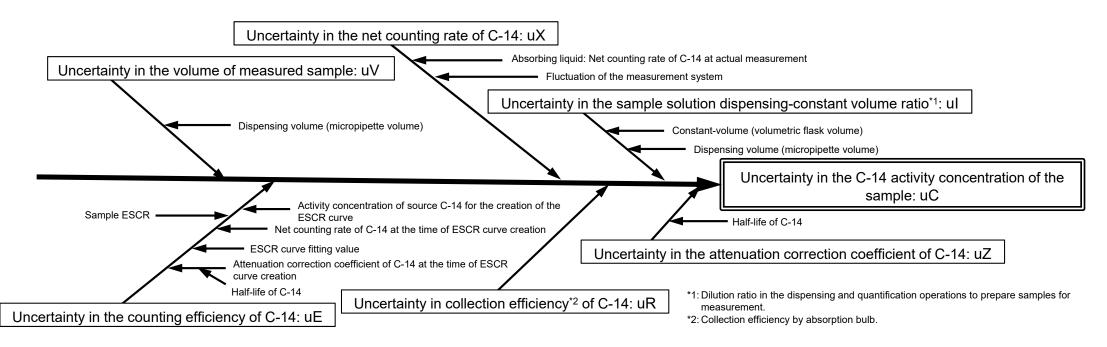

Sources of uncertainty in the measurement of γ-ray emitting nuclides with Ge semiconductor detector

Major sources	Symbol	Breakdown of sources	
Sample dispensing volume	uV	Sample dispensing volume (graduated cylinder volume)	
Peak efficiency	uE	Radioactivity of the calibration source, peak net count of the calibration source, γ-ray emission rate of the calibration source Calibration formula fitting, attenuation correction coefficient at peak efficiency calibration	
Net count	uX	Fluctuation of the measurement system, peak net count of the target	
γ-ray emission rate	uY	γ-ray emission rate of the detected nuclide	
Attenuation correction coefficient	uΖ	Half-life	


2-1 (2) [1] Analysis methods and systems for the radioactive concentration of nuclides in ALPS treated water [7]-3.1. Method to assess uncertainties (2/10)

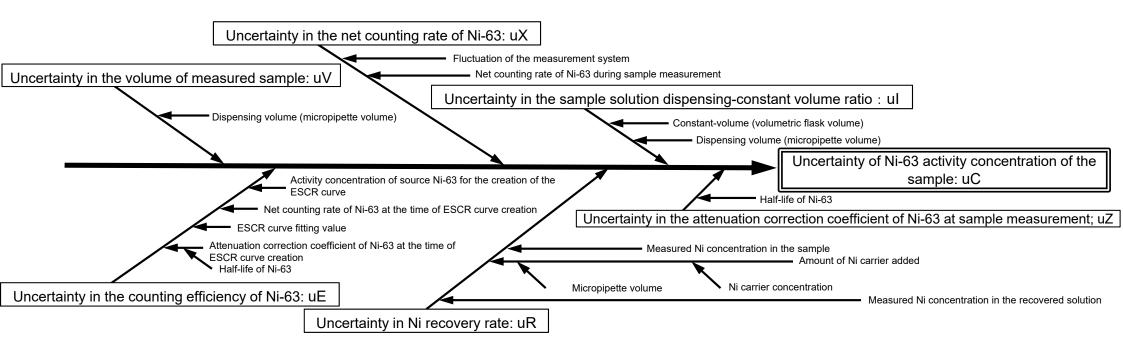
Example budget sheet created on the measurement of γ-ray emitting nuclide with a Ge semiconductor detector

2-1 (2) [1] Analysis methods and systems for the radioactive concentration of nuclides in ALPS treated water [7]-3.1. Method to assess uncertainties (3/10)


Sources of uncertainty in the measurement of tritium activity concentration by LSC

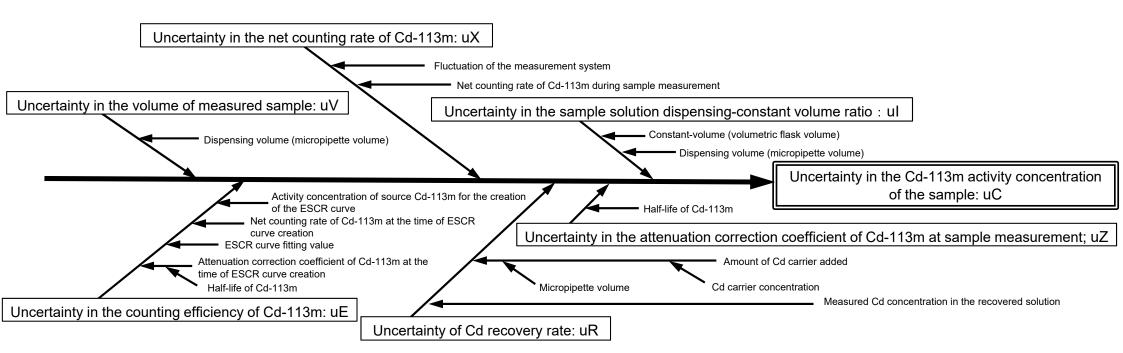
Major sources	Symbol	Breakdown of sources
Distilled sample dispensing volume	uV	Distilled sample dispensing volume (micropipette volume)
Counting efficiency of H-3	uE	Activity concentration and net count of H-3, curve fitting value (at the time of ESCR curve creation) Attenuation correction of H-3
Net counting rate of H-3	uX	Fluctuation of the measurement system, net count of H3
Attenuation correction coefficient of H-3	uΖ	Half-life

2-1 (2) [1] Analysis methods and systems for the radioactive concentration of nuclides in ALPS treated water [7]-3.1. Method to assess uncertainties (4/10)


Sources of uncertainty in the measurement of C-14 activity concentration by LSC

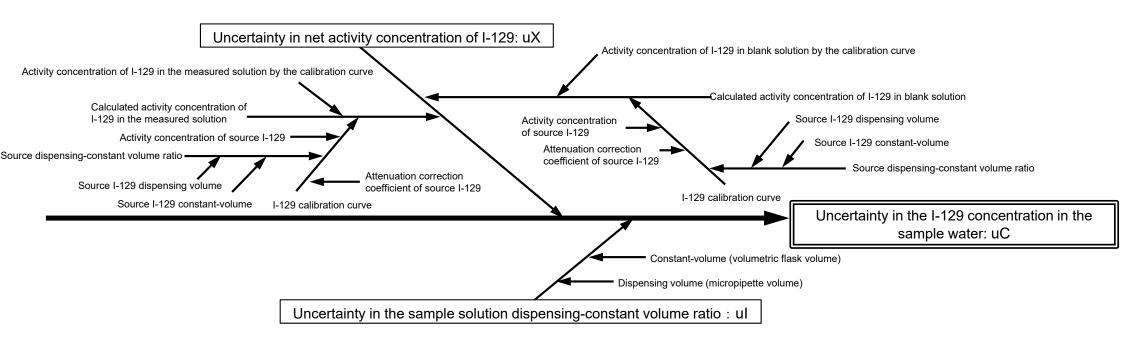
Major sources	Symbol	Breakdown of sources	
Sample volume to be measured	uV	Dispensing volume (micropipette volume)	
Counting efficiency of C-14	uE	Activity concentration and net count of C-14, curve fitting value (at the time of ESCR curve creation) Attenuation correction of C-14	
Net counting rate of C-14	uX	Fluctuation of the measurement system, net count of C-14	
Collection efficiency of C-14	uR	Net counting rate of C-14 (collection bottle 1, collection bottle 2)	
Sample solution dispensing- constant volume ratio	ul	Dispensing volume (micropipette volume), constant-volume (volumetric flask volume)	
Attenuation correction coefficient of C-14	uZ	Half-life	

2-1 (2) [1] Analysis methods and systems for the radioactive concentration of nuclides in ALPS treated water [7]-3.1. Method to assess uncertainties (5/10)


Sources of uncertainty in the measurement of Ni-63 activity concentration by LSC

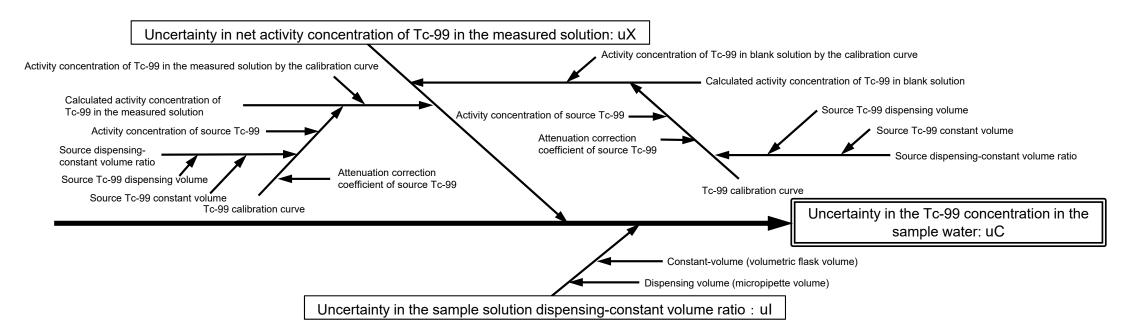
Major sources	Symbol	Breakdown of sources			
Sample volume to be measured	uV	Dispensing volume (micropipette volume)			
Ni-63 counting efficiency	uE	tivity concentration and net count of Ni-63 (at the time of ESCR curve creation) Irve fitting value, attenuation correction of Ni-63			
Net counting rate of Ni-63	uX	uation of the measurement system, net count of Ni-63			
Ni recovery rate	uR	Ni concentration in the recovered solution, amount of Ni carrier added, Ni concentration in the sample			
Sample solution dispensing- constant volume ratio	ul	Dispensing volume (micropipette volume), constant-volume (volumetric flask volume)			
Attenuation correction coefficient of Ni-63	uZ	Half-life			

2-1 (2) [1] Analysis methods and systems for the radioactive concentration of nuclides in ALPS treated water [7]-3.1. Method to assess uncertainties (6/10)


Sources of uncertainty in the measurement of Cd-113m activity concentration by LSC

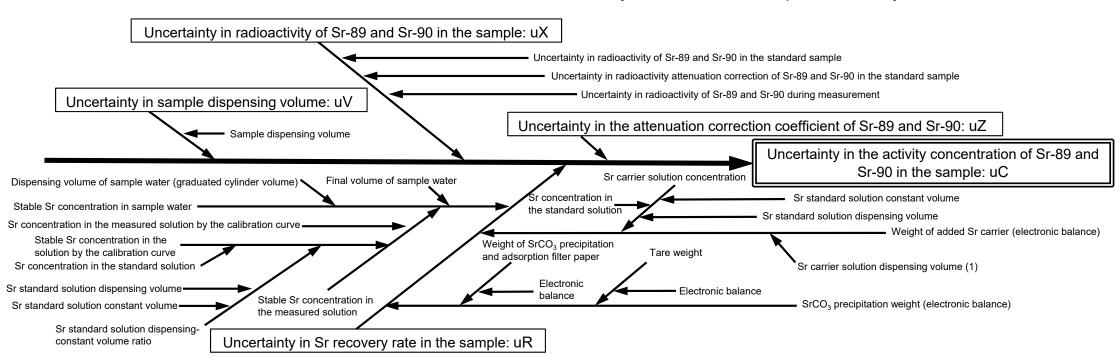
Major sources	Symbol	Breakdown of sources	
Sample volume to be measured	uV	Dispensing volume (micropipette volume)	
Cd-113m counting efficiency	uE	Activity concentration and net count of C-14, curve fitting value (at the time of ESCR curve creation) Attenuation correction of C-14 (estimation with an alternative to Cd-113m calibration source)	
Net counting rate of Cd-113m	uX	Fluctuation of the measurement system, net count of Cd-113m	
Cd recovery rate	uR	Cd concentration in the recovered solution, amount of Cd carrier added	
Sample solution dispensing- constant volume ratio	ul	Dispensing volume (micropipette volume), constant-volume (volumetric flask volume)	
Attenuation correction coefficient of Cd-113m	uZ	Half-life	

2-1 (2) [1] Analysis methods and systems for the radioactive concentration of nuclides in ALPS treated water [7]-3.1. Method to assess uncertainties (7/10)


Sources of uncertainty in the measurement of I-129 activity concentration by ICP-MS

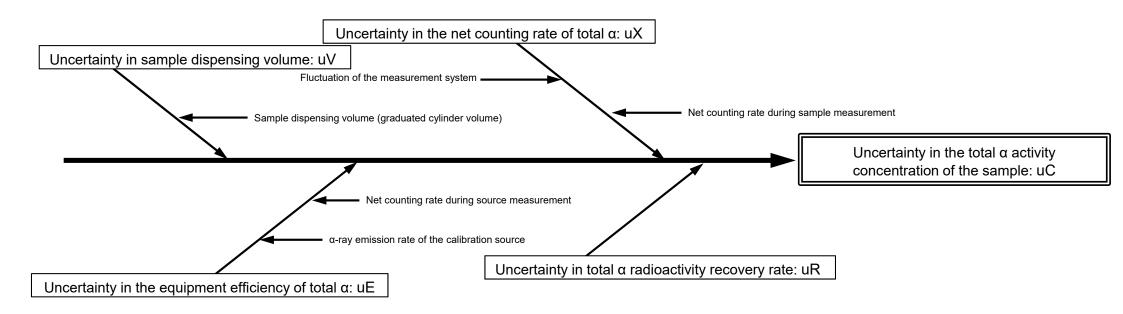
Major sources	Symbol	Breakdown of sources	
T-129 net activity concentration in test solution	uX	Calculated I-129 activity concentration in blank solution, calculated I-129 activity concentration in the test solution	
Sample solution dispensing- constant volume ratio	ul	Dispensing volume (micropipette volume), constant-volume (volumetric flask volume)	

2-1 (2) [1] Analysis methods and systems for the radioactive concentration of nuclides in ALPS treated water [7]-3.1. Method to assess uncertainties (8/10)


Sources of uncertainty in the measurement of Tc-99 activity concentration by ICP-MS

Major sources	Symbol	Breakdown of sources	
Net activity concentration of Tc- 99 in the measured solution	uX	Calculated Tc-99 activity concentration in blank solution, calculated Tc-99 activity concentration in the test solution	
Sample solution dispensing- constant volume ratio	ul	Dispensing volume (micropipette volume), constant-volume (volumetric flask volume)	

2-1 (2) [1] Analysis methods and systems for the radioactive concentration of nuclides in ALPS treated water [7]-3.1. Method to assess uncertainties (9/10)


Sources of uncertainties in the measurement of Sr-89 and Sr-90 activity concentrations with β nuclide analyzer

Major sources	Symbol	Breakdown of sources
Sample dispensing volume	uV	Sample dispensing volume (graduated cylinder volume)
Sr-89 and Sr-90 activity intensity in the sample	uX	Sr-89, Sr-90 activity intensity in standard sample, Sr-89, Sr-90 activity attenuation correction, Sr-89, Sr-90 activity intensity at measurement
Sr recovery rate of the sample	uR	Weight of SrCO3 precipitates, concentration of stable Sr in sample water, amount of Sr carrier added
Attenuation correction coefficient of Sr-89 and Sr-90	uZ	Half-life

2-1 (2) [1] Analysis methods and systems for the radioactive concentration of nuclides in ALPS treated water [7]-3.1. Method to assess uncertainties (10/10)

Sources of uncertainty in the measurement of activity concentrations of α -ray emitting nuclides with α automatic measuring device

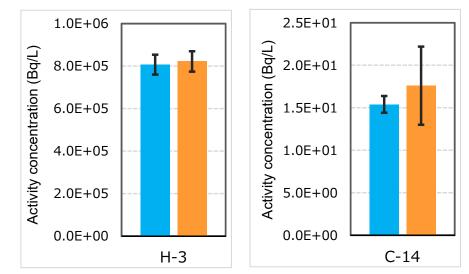
Major sources	Symbol	Breakdown of sources
Sample dispensing volume	uV	Sample dispensing volume (graduated cylinder volume)
Total α equipment efficiency	uE	Net counting rate at measurement of the source, α -ray emission rate from the calibration source
Net count of total α	uX	Fluctuation of the measurement system, net counting rate at sample measurement
Recovery rate of total α radioactivity	uR	-

2-1 (2) [1] Analysis methods and systems for the radioactive concentration of nuclides in ALPS treated water [7]-3.2. Uncertainty assessment result (1/3)

Expanded uncertainty in the measurement of γ -ray emitting nuclides with Ge semiconductor detector (UC [Bq/L]) *Coverage factor k = 2

Nuclide	Measured result: C	Expanded uncertainty: UC	Nuclide	Measured result: C	Expanded uncertainty: UC	ļ	Expanded	d uncertainty range	Third-party organizatio
Rb-86	< 4.97E-01	3.4E-01	Ba-140	< 2.02E-01	1.4E-01	2.0E+00	\]	4.0E-01	
Y-91	< 1.65E+01	1.1E+01	Ce-141	< 2.62E-01	1.8E-01	Γ)	T	L)	
Nb-95	< 4.96E-02	3.4E-02	Ce-144	< 5.69E-01	4.0E-01	<u>.</u> 1.5E+00	\	B 3.0E-01	T
Ru-103	< 5.27E-02	3.6E-02	Pr-144	_	-				т
Ru-106	1.43E+00	3.7E-01	Pr-144m	-	-			rati	
Rh-103m	-	-	Pm-146	< 6.66E-02	4.5E-02	concentration (Bq/L) 1.90+300		Activity concentration (Bq/L) 70-30.5 (Bq/L) 1.0E-01	
Rh-106	-	-	Pm-147	-	-			ouc	
Ag-110m	< 4.26E-02	2.9E-02	Pm-148	< 2.33E-01	1.6E-01			o ,≩ 1.0E-01	
Cd-115m	< 2.70E+00	2.6E+00	Pm-148m	< 4.84E-02	3.3E-02	Ati 5.0E-01		, tiv	
Sn-119m	-	-	Sm-151	-	-			· ·	
Sn-123	< 6.59E+00	4.5E+00	Eu-152	< 2.84E-01	1.9E-01	0.0E+00		0.0E+00 L	
Sn-126	< 2.92E-01	2.0E-01	Eu-154	< 1.14E-01	7.7E-02	Ru	ı-106		Sb-125
Sb-124	< 9.67E-02	6.6E-02	Eu-155	< 3.36E-01	2.3E-01	2.5E-01		5.0E-01 r	
Sb-125	2.26E-01	1.0E-01	Gd-153	< 2.64E-01	1.8E-01	F)	т		
Te-123m	< 9.19E-02	6.4E-02	Tb-160	< 1.43E-01	9.7E-02	(T/bg) 2.0E-01		₩ 4.0E-01	
Te-125m	-	-	Mn-54	< 3.83E-02	2.6E-02	uo) uc	
Te-127	< 4.69E+00	3.5E+00	Fe-59	< 8.66E-02	5.9E-02	1.5E-01		.0E-01	
Te-127m	-	-	Co-58	< 4.11E-02	2.8E-02	1.5E-01		entr	
Te-129	< 6.15E-01	4.3E-01	Co-60	3.33E-01	6.1E-02	Ğ 1.0E-01		G 2.0E-01	
Te-129m	< 1.37E+00	1.1E+00	Zn-65	< 9.41E-02	6.4E-02	t _z		о Х С	
Cs-134	< 7.60E-02	5.2E-02	_			Stivity 5.0E-02		Activity Activity Activity Concentration Bq/L) Bq/L) Bq/L) Bq/L)	
Cs-135	-	-				Ă I		Ac	
Cs-136	< 4.68E-02	3.2E-02				0.0E+00		_{0.0E+00} L	
Cs-137	1.85E-01	4.1E-02				Cs	5-137		Co-60
Ba-137m	-	-				Comparison of valu	ine ebtein	through opoly	to by a third

Results of analysis by TEPCO

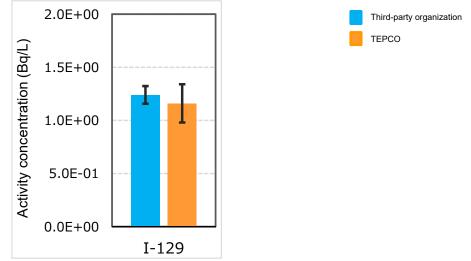

Comparison of values obtained through analysis by a thirdparty organization and those through analysis by TEPCO

2-1 (2) [1] Analysis methods and systems for the radioactive concentration of nuclides in ALPS treated water [7]-3.2. Uncertainty assessment result (2/3)

Expanded uncertainty in the measurement of activity concentrations by LSC (UC [Bq/L]) *Coverage factor k = 2

	Measurement result: C	Expanded uncertainty: UC
H-3	8.22E+05	4.8E+04
C-14	1.76E+01	4.6E+00
Ni-63	< 8.45E+00	3.7E-01
Cd-113m	< 8.52E-02	3.8E-03

Results of analysis by TEPCO



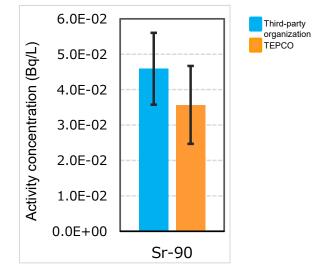
Comparison of values obtained through analysis by a thirdparty organization and those through analysis by TEPCO

Expanded uncertainty in the measurement of activity concentrations by ICP-MS (UC [Bq/L]) *Coverage factor k = 2

	Measurement result: C	Expanded uncertainty: UC
I-129	1.16E+00	1.8E-01
Тс-99	< 1.23E+00	1.6E-02

Results of analysis by TEPCO

Comparison of values obtained through analysis by a thirdparty organization and those through analysis by TEPCO


119

2-1 (2) [1] Analysis methods and systems for the radioactive concentration of nuclides in ALPS treated water [7]-3.2. Uncertainty assessment result 3/3)

Expanded uncertainty in the measurement of Sr-89 and Sr-90 activity concentrations with β nuclide analyzer (UC [Bq/L]) *Coverage factor k = 2

	Measurement result: C	Expanded uncertainty: UC
Sr-89	< 5.36E-02	9.7E-03
Sr-90	3.57E-02	1.1E-02

Results of analysis by TEPCO

Comparison of values obtained through analysis by a thirdparty organization and those through analysis by TEPCO

Expanded uncertainty in the measurement of total α activity concentrations with α automatic measuring device (UC [Bq/L]) *Coverage factor k = 2

	Measurement result: C	Expanded uncertainty: UC
Total α radioactivity	< 3.25E-02	6.4E-03

Results of analysis by TEPCO

Not compared