

Main decommissioning work and steps

Fuel removal from the spent fuel pool was completed in December 2014 at Unit 4 and started from April 15, 2019 at Unit 3. Dust density in the surrounding environment is being monitored and work is being implemented with safety first. Work continues sequentially toward the start of fuel removal from Units 1 and 2 and debris (Note 1) retrieval from Units 1-3.

(April 15, 2019)

(Note 1) Fuel assemblies having melted through in the accident.

Fuel removal from the spent fuel pool

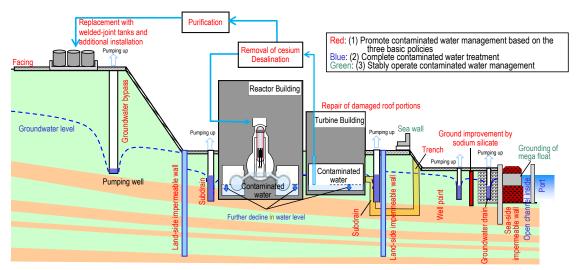
Fuel removal from the spent fuel pool started from April 15,

2019 at Unit 3. With the aim of completing fuel removal by

the end of FY2020, rubble and fuel are being removed.

Removed fuel assemblies) 119/566 (As of April 30, 2020

Contaminated water management proceeds with the following three efforts:


(1) Efforts to promote contaminated water management based on the three basic policies

[Three basic policies]

- 1. "Remove" the source of water contamination
- 2. "Redirect" fresh water from contaminated areas
- 3. "Retain" contaminated water from leakage

(2) Efforts to complete contaminated water treatment

- 4. Treatment of contaminated water in buildings
- 5. Measures to remove a-nuclide and reduce the density in contaminated water
- 6. Measures to alleviate the radiation dose of Zeolite sandbags in the Process Main Building and High-Temperature Incinerator Building and examine safe management methods

(3) Efforts to stably operate contaminated water management

- 7. Planning and implementing necessary measures to prepare for large-scale disasters such as tsunami and heavy rain
- 8. Periodically inspecting and updating facilities to maintain the effect of contaminated water management going forward
- 9. Examining additional measures as required, with efforts to gradually expand the scale of fuel debris retrieval in mind

(1) Efforts to promote contaminated water management based on the three basic policies Strontium-treated water from other equipment is being re-treated in the multi-nuclide removal equipment (ALPS)

- and stored in welded-joint tanks. Multi-layered contaminated water management measures, including land-side impermeable walls and subdrains, have stabilized the groundwater at a low level. The increased contaminated water generated during rainfall is being suppressed by repairing damaged portions of building roofs, facing onsite, etc. Through these measures, the generation of contaminated water was reduced from approx. 540 m3/day (in May FY2014) to approx. 170 m3/day (in FY2018).
- Measures continue to further suppress the generation of contaminated water to approx. 150 m³/day within FY2020 and 100 m³/day or less within 2025

(2) Efforts to complete contaminated water treatment

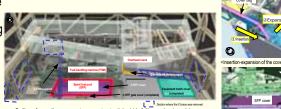
- Contaminated water levels in buildings declined as planned and connected parts between Units 1 and 2 and Units 3 and 4 were separated respectively. For a-nuclide detected as water levels progressively declined, characteristics are being determined and treatment methods are examined.
- Treatment of contaminated water in buildings will be completed within 2020, excluding Unit 1-3 Reactor Buildings, Process Main Building and High Temperature Incinerator Building. For Reactor Buildings, the amount of contaminated water will be halved during the period FY2022 - 2024 from the levels at the end of 2020.
- For Zeolite sandbags on the basement floors of the Process Main Building and High Temperature Incinerator Building, measures to reduce the radiation dose are being examined with stabilization in mind.

(3) Efforts to stably operate contaminated water management

To prepare for tsunamis, measures including closing openings of buildings, installing sea walls and transferring and grounding the mega float are being implemented. For heavy rain, sandbags are being installed to suppress direct inflow into buildings while enhancing drainage channels and implementing other measures as planned.

Progress Status and Future Challenges of the Mid-and-Long-Term Roadmap toward Decommissioning of TEPCO Holdings Fukushima Daiichi Nuclear Power Station (Outline)

The temperatures of the Reactor Pressure Vessel (RPV) and Primary Containment Vessel (PCV) of Units 1-3 have been maintained within the range of approx. 15-25°C¹¹ over the past month. There was no significant change in the density of radioactive materials newly released from Reactor Buildings into the air¹². It was concluded that the comprehensive cold shutdown condition had been maintained.


* 1 The values varied somewhat, depending on the unit and location of the thermometer.

* 2 In March 2020, the radiation exposure dose due to the release of radioactive materials from the Unit 1-4 Reactor Buildings was evaluated at less than 0.00014 mSv/year at the site boundary. The annual radiation dose from natural radiation is approx. 2.1 mSv/year (average in Japan).

Toward installation of the Unit 1 SFP cover

As part of work to remove the falling roof on the south side of the Reactor Building operating floor, a cover will be installed over the SFP to prevent rubble falling on the pool and reduce risks. Before the actual installation, a mockup test of the work was conducted to confirm that there was no problem with the insertion of the rolled SFP cover bag and its extension. At present, the final check for the work, including training, is underway.

After the check, the bag will be inserted on the SFP from the east side of the Reactor Building from around mid-June 2020. The bag will then be expanded by air, air mortar injected in the bag and the cover installation completed by around late June.

Investigation inside the Unit 2 SFP in mid-June

Before fuel removal from the SFP, a remote-controlled investigation inside the SPF using an underwater ROV with a camera will be conducted to check the fuel top and any potential obstacles.

At present, preparation is underway, including carrying in equipment. Following mockup training at the Fukushima Robot Test Field in mid-May, the investigation will be conducted in mid-June.

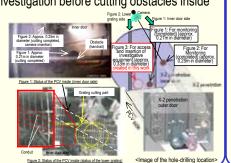
Inspection including operation check for the Unit 3 FHM

From March 30, the fuel-handling machine (FHM) is being inspected during the legal inspection of cranes. In FY2020, in addition to the inspection items of FY2019, a series of operation checks assuming fuel removal are being conducted.

With safer and earlier removal in mind, rubble was removed in advance. To prepare for continuous fuel removal, additional training for added workers will be provided after the inspection and fuel removal will be resumed from late May if possible.

"Sessions for hearing opinions"

Based on the report from the "Subcommittee on Handling of the ALPS Treated Water" published on February 10, 2020, the government held a meeting as an opportunity to receive opinions from a wide variety of concerned parties, including representatives of local municipalities and associations in the fields of agriculture, forestry and fisheries, on April 6 and 13 and is opening a call for public comments in written documents during the period April 6 – May 15.


<Outline of overall measures to prevent potential rubble falling and reduce risks> Blowout panel (closed) Cover for fuel removal Removed fuel (assemblies)* Operating floor Front chamber Dome roof Removed fuel (assemblies) _Fuel-handling 119/566 1535/1535*2 Windbreak machine Crane Spent Fuel Pool (As of April 30, 2020) fence (Fuel removal completed on December 22, 2014) FHM girder (SFP Shield Land-side impermeable walls Primary Building cover steel frame ontainment 615 392 Vessel (PCV) K Water Water Water injectio iniectio Reactor Pressure injection X Vessel (RPV) Fuel debris 1568/1568 Unit 4* 2 Including two new fuel Unit 3 *1 Fuel assemblies stored in the rack of the common pool Unit 2 Reactor Building (R/B) Unit ' assemblies removed first in 201

Completion of the PCV inner door holes created to construct the Unit 1 access route

Toward investigating the inside of the Unit 1 Primary Containment Vessel (PCV), an access route is being constructed. As pre-investigation before cutting obstacles inside

the PCV, a camera was inserted from the completed hole to check the inside and confirm that no fallen objects which may affect future cutting work were present.

After the pre-investigation, work to create the third hole (approx. 0.33 m in diameter: Figure 3) in the inner door started and was completed on April 22. As the following access route construction work, cutting of obstacles will start from around mid-May if possible.

Dismantling to the scheduled 23rd block of the Unit 1/2 exhaust stack

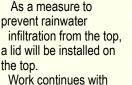
▼GI +120n

(61m)

▼GI +59m

<Refore dismantling

Dismantling rang

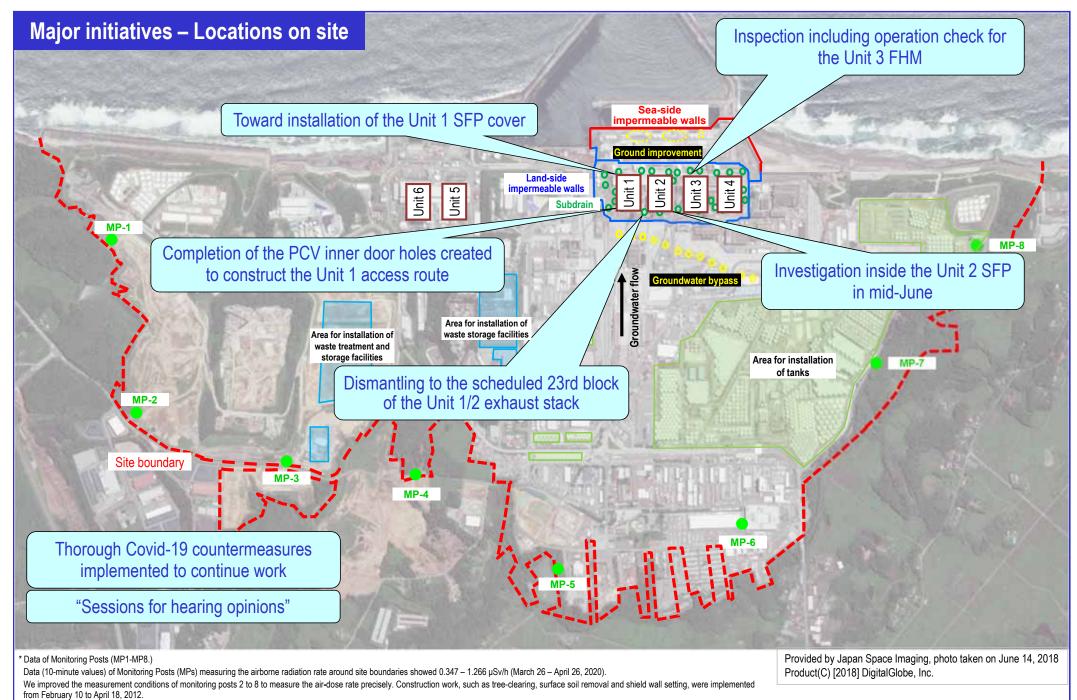

Demantled

▼GL+59m

<Presen

lion

For the Unit 1/2 exhaust stack, dismantling to the scheduled 23rd block had been completed by April 29.



Work continues with safety first, toward completing dismantling by early May.

Thorough Covid-19 countermeasures implemented to continue work

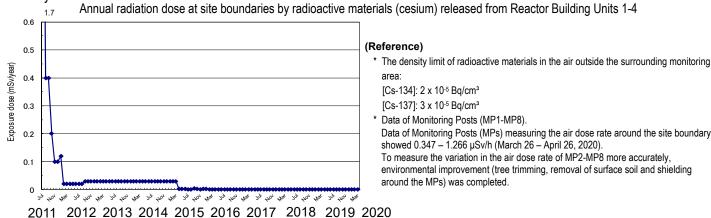
At the Fukushima Daiichi Nuclear Power Station, countermeasures have been implemented to prevent the infection spread of Covid-19, such as requiring employees to take their temperature prior to coming to the office and to wear masks at all times, etc. In light of the fact that no TEPCO HD employees or cooperative firm laborers at the Fukushima Daiichi NPS have contracted Covid-19 (as of April 27), at current time fieldwork will continue as usual.

In order to prevent the infection spread of Covid-19, efforts shall further be enhanced to avoid the "Three Cs" (Closed spaces, Crowded places, Close-contact settings). Moreover, the following additional countermeasures are implemented from April 29 through May 10, which has been deemed an "enhanced countermeasures period," in order to reduce the risk of infection: all personnel have been requested to avoid leaving their homes for unnecessary reasons, including travel outside of Fukushima Prefecture, during this period. Efforts will continue to prevent occurrence and increase of infection cases.

Therefore, monitoring results at these points are lower than elsewhere in the power plant site.

The radiation shielding panels around monitoring post No. 6, which is one of the instruments used to measure the radiation dose at the power station site boundary, were taken off from July 10-11, 2013, since further deforestation, etc. had caused the surrounding radiation dose to decline significantly.

Confirmation of the reactor conditions


1. Temperatures inside the reactors

Through continuous reactor cooling by water injection, the temperatures of the Reactor Pressure Vessel (RPV) bottom and the Primary Containment Vessel (PCV) gas phase were maintained within the range of approx. 15 to 25°C for the past month, though they varied depending on the unit and location of the thermometer.

2. Release of radioactive materials from the Reactor Buildings

As of March 2020, the density of the radioactive materials newly released from Reactor Building Units 1-4 into the air and measured at the site boundary was evaluated at approx. 3.4×10⁻¹² Bq/cm³ and 1.4×10⁻¹¹ Bq/cm³ for Cs-134 and Cs-137 respectively, while the radiation exposure dose due to the release of radioactive materials there was less than 0.00014 mSv/year.

[Cs-134]: 2 x 10-5 Bg/cm3 [Cs-137]: 3 x 10-5 Bg/cm3 Data of Monitoring Posts (MP1-MP8) Data of Monitoring Posts (MPs) measuring the air dose rate around the site boundary showed 0.347 - 1.266 uSv/h (March 26 - April 26, 2020) To measure the variation in the air dose rate of MP2-MP8 more accurately environmental improvement (tree trimming, removal of surface soil and shielding around the MPs) was completed.

Note 1: Different formulas and coefficients were used to evaluate the radiation dose in the facility operation plan and monthly report. The evaluation methods were integrated in September 2012. As the fuel removal from the spent fuel pool (SFP) commenced for Unit 4, the radiation exposure dose from Unit 4 was added to the items subject to evaluation since November 2013. The evaluation has been changed to a method considering the values of continuous dust monitors since FY2015, with data to be evaluated monthly and announced the following month.

Note 2: Radiation dose was calculated using the evaluation values of release amount from Units 1-4 and Units 5 and 6. The radiation dose of Unit 5 and 6 was evaluated based on expected release amount during operation until September 2019 but the evaluation method was reviewed and changed to calculate based on the actual measurement results of Units 5 and 6 from October

3. Other indices

There was no significant change in indices, including the pressure in the PCV and the PCV radioactivity density (Xe-135) for monitoring criticality, nor was any anomaly in the cold shutdown condition or criticality sign detected.

Based on the above, it was confirmed that the comprehensive cold shutdown condition had been maintained and the reactors remained in a stabilized condition.

II. Progress status by each plan

1. Contaminated water management

Based on the three basic policies: "remove" the source of water contamination, "redirect" fresh water from contaminated areas and "retain" contaminated water from leakage, multi-layered contaminated water management measures have been implemented to stably control groundwater

- Status of contaminated water generated
- · Multi-layered measures, including pumping up by subdrains and land-side impermeable walls, which were buildings.
- After "redirecting" measures (groundwater bypass, subdrains, land-side impermeable walls and others) were steadily were first launched to approx. 180 m³/day (the FY2019 average).
- Measures will continue to further reduce the volume of contaminated water generated.

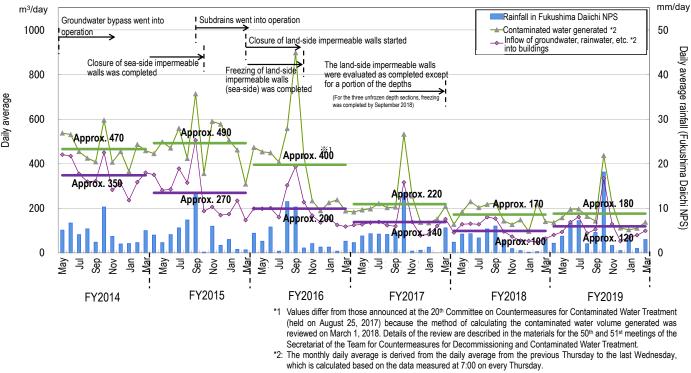


Figure 1: Changes in contaminated water generated and inflow of groundwater, rainwater, into buildings

- Operation of the groundwater bypass
- From April 9, 2014, the operation of 12 groundwater bypass pumping wells commenced sequentially to pump up released after TEPCO and a third-party organization had confirmed that its quality met operational targets.
- Pumps are inspected and cleaned as required based on their operational status.
- Operation of the Water Treatment Facility special for Subdrain & Groundwater drains \geq
- To reduce the level of groundwater flowing into the buildings, work began to pump up groundwater from wells targets.
- period March 19 April 22, 2020).
- As one of the multi-layered contaminated-water management measures, in addition to waterproof pavement (facing

implemented to control the continued generation of contaminated water, suppressed the groundwater inflow into

implemented, the generation amount reduced from approx. 470 m³/day (the FY2014 average) when the measures

groundwater. The release then started from May 21, 2014, in the presence of officials from the Intergovernmental Liaison Office for the Decommissioning and Contaminated Water Issue of the Cabinet Office. Up until April 26, 2020, 548,651 m³ of groundwater had been released. The pumped-up groundwater was temporarily stored in tanks and

(subdrains) around the buildings on September 3, 2015. The pumped-up groundwater was then purified at dedicated facilities and released from September 14, 2015, in the presence of officials from the Intergovernmental Liaison Office for the Decommissioning and Contaminated Water Issue of the Cabinet Office. Up until April 26, 2020, a total of 885,806 m³ had been drained after TEPCO and a third-party organization had confirmed that its quality met operational

Due to the rising level of the groundwater drain pond after the sea-side impermeable walls had been closed, pumping started on November 5, 2015. Up until April 27, 2020, a total of approx. 234,523 m³ had been pumped up and a volume of under 10 m³/day is being transferred from the groundwater drain to the Turbine Buildings (average for the

that aims to improve the work environment and prevent rainwater infiltration: as of the end of March 2020, approx.

94% of the planned area (1,450,000 m² onsite) had been completed) to suppress rainwater infiltrating the ground, facilities to enhance the subdrain treatment system were installed and went into operation from April 2018, increasing the treatment capacity from 900 to 1,500 m³/day and improving reliability. Operational efficiency was also improved to treat up to 2,000 m³/day for almost one week during the peak period.

- To maintain the level of groundwater, work to install additional subdrain pits and to recover existing ones is underway. The additional pits are scheduled to start operation sequentially, from a pit which work is completed (12 of 14 new subdrain pits went into operation). For recovering the existing pits, work for all three pits scheduled was completed. All of them went into operation from December 26, 2018. Work to recover another pit started from November 2019 (No. 49 pit).
- To eliminate the need to suspend water pumping while cleaning the subdrain transfer pipe, the pipe will be duplicated. Installation of the pipe and ancillary facilities was completed.
- Since the subdrains went into operation, the inflow to buildings tended to decline to under 150 m³/day when the subdrain water level declined below T.P. 3.0 m but increased during rainfall.

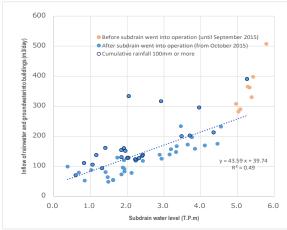


Figure 2: Correlation between inflow such as groundwater and rainwater into buildings and the water level of Units 1-4 subdrains

- > Construction status of the land-side impermeable walls and status of groundwater levels around the buildinas
- An operation to maintain the land-side impermeable walls and prevent the frozen soil from thickening further continued from May 2017 on the north and south sides and started from November 2017 on the east side, where sufficiently thick frozen soil was identified. The scope of the maintenance operation was expanded in March 2018.
- In March 2018, construction of the land-side impermeable walls was completed, except for a portion of the depth, based on a monitoring result showing that the underground temperature had declined below 0°C in almost all areas, while on the mountain side, the difference in internal and external water levels increased to approx. 4-5 m. The 21st Committee on Countermeasures for Contaminated-Water Treatment, held on March 7, 2018, evaluated that alongside the function of subdrains and other measures, a water-level management system to stably control groundwater and redirect groundwater from the buildings had been established and allowed the amount of contaminated water generated to be reduced significantly.
- A supplementary method was implemented for the unfrozen depth and it was confirmed that the temperature of this portion had declined below 0°C by September 2018. From February 2019, a maintenance operation started throughout all sections.
- The groundwater level in the area inside the land-side impermeable walls has been declining every year. On the mountain side, the difference between the inside and outside increased to approx. 5-6 m. The water level in the bank area has remained low (T.P. 1.6-1.7 m) compared to the ground surface (T.P. 2.5 m).

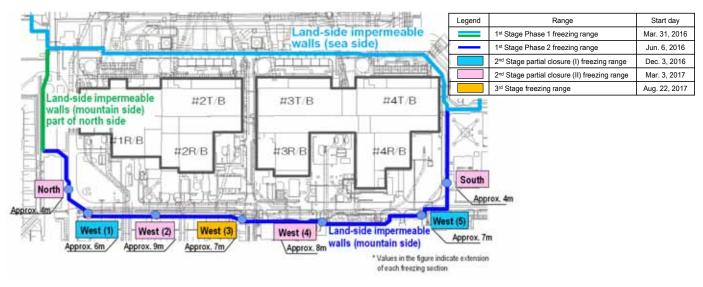
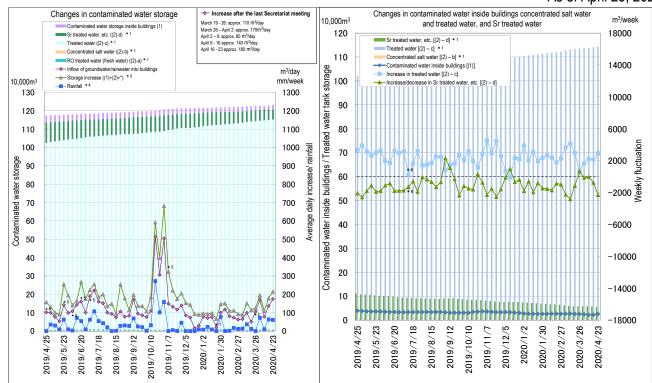


Figure 3: Closure parts of the land-side impermeable walls (on the mountain side)

- \geq Operation of multi-nuclide removal equipment
- removal equipment went into full-scale operation from October 16, 2017.
- multi-nuclide removal equipment).
- To reduce the risks of strontium-treated water, treatment using existing, additional and high-performance multi-nuclide removal equipment has been underway (existing: from December 4, 2015; additional: from May 27, 2015; highperformance: from April 15, 2015). Up until April 23, 2020, approx. 701,000 m³ had been treated.
- Toward reducing the risk of contaminated water stored in tanks \geq
- been treated.
- Measures in the Tank Area
- into the environment since May 21, 2014 (as of April 27, 2020, a total of 152,350 m³).


Regarding the multi-nuclide removal equipment (existing and high-performance), hot tests using radioactive water are underway (for existing equipment, System A: from March 30, 2013, System B: from June 13, 2013, System C: from September 27, 2013; and for high-performance equipment, from October 18, 2014). The additional multi-nuclide

As of April 23, 2020, the volumes treated by existing, additional and high-performance multi-nuclide removal equipment were approx. 433,000, 642,000 and 103,000 m³, respectively (including approx. 9,500 m³ stored in the J1(D) tank, which contained water with highly concentrated radioactive materials at the System B outlet of the existing

Treatment measures comprising the removal of strontium by cesium-absorption apparatus (KURION) (from January 6, 2015), the secondary cesium-absorption apparatus (SARRY) (from December 26, 2014) and the third cesiumabsorption apparatus (SARRY II) (from July 12, 2019) are underway. Up until April 23, 2020, approx. 581,000 m³ had

Rainwater accumulates and is collected inside the area of contaminated water tanks. After removing radionuclides, the rainwater is sprinkled on the ground of the site, if the radioactivity level does not meet the standard for discharging

As of April 23, 2020

*1: Water amount for which the water-level gauge indicates 0% or more

*2: To detect storage increases more accurately, the calculation method was reviewed as follows from February 9, 2017; (The revised method was applied from March 1, 2018

[(Inflow of groundwater/rainwater into buildings) + (other transfer) + (chemical injection into ALPS)] *3: The storage amount increased due to transfer to buildings in association with the decommissioning work

(The transferred amount comprised (1) Transfer of RO concentrated water from groundwater drains to Turbine Building: approx. 80 m³/day, (2) Transfer from wells and groundwater drains: approx.50 m³/day, (3) Transfer from Unit 5//6 SPT to Process Main Building: approx. 20 m3/day, others)

*4: Changed from December 13, 2018 from rainfall in Namie to that within the site.

*5: Considered attributable to the increased inflow of groundwater, rainwater and others to buildings due to the decline in the level of contaminated water in buildings. (April 22, May 16 and 30, June 13 and 27, 2019, March 18, 2020)

Methods of calculating the water volume and the capacity of tanks, which had varied in each tank area, were unified, which led to changes in the calculated increase in treated water and variation in Srtreated water and others. However, the actual treated volumes were approx. 2,200 m³/week for treated water and approx. 1,100 m³/week for Sr-treated water and others (July 11, 2019).

*7: From the period January 16-23, 2019, amid a decline in the water level in Unit 4 R/B, system water in S/C flowing into R/B contaminated water is reflected in the inflow of groundwater and rainwater in addition to the transferred amount generated in decommissioning work.

Figure 4: Status of contaminated water storage

- \geq Onsite investigation toward removing the Unit 1/2 SGTS pipes
 - Removal of pipes for the Unit 1/2 standby gas treatment system (SGTS) is being examined because the high density is possibly attributable to the radioactivity density in water from the Unit 1/2 exhaust stack drain sump pit and to prevent interference with work of the rainwater prevention measures for the Unit 1/2 Radioactive Waste Treatment Building and reduce the onsite dose.
- Toward removing the Unit 1/2 SGTS pipes, an onsite investigation will be conducted. As an investigation inside the exhaust stack, inside images are being taken and the inside dose measured from April 2020 and a wipe sampling of the inner surface will be conducted.
- Based on the investigative results, examination will proceed to complete the pipe removal within the 1st half of FY2021.

2. Fuel removal from the spent fuel pools

Work to help remove spent fuel from the pool is progressing steadily while ensuring seismic capacity and safety. The removal of spent fuel from the Unit 4 pool commenced on November 18, 2013 and was completed by December 22, 2014

- Main work to help spent fuel removal at Unit 1
- From March 18, 2019, the removal of small rubble in the east-side area around the spent fuel pool (SFP) started using pliers and suction equipment, while from July 9, small rubble removal on the south side of the SFP started.
- The well plug, which was considered misaligned from its normal position due to the influence of the hydrogen explosion at the time of the accident, was investigated for the period July 17 – August 26, 2019, by taking photos with a camera, measuring the air dose rate and collecting 3D images.
- A prior investigation on September 27, 2019 confirmed the lack of any obstacle which may affect the plan to install

the cover over the SFP, the absence of any heavy object such as a concrete block, as detected in Unit 3 and the fact that panel- and bar-shaped rubble pieces were scattered on the rack.

- After examining two methods: (i) installing a cover after rubble removal and (ii) initially installing a large cover over the removal.
- As part of work to remove the falling roof on the south side of the Reactor Building operating floor, a cover will be expanded by air, air mortar injected in the bag and the cover installation completed by around late June.
- Main work to help spent fuel removal at Unit 2
- in mind, work to move and contain the remaining objects on the operating floor (1st round) was completed.
- On February 1, 2019, an investigation to measure the radiation dose on the floor, walls and ceiling inside the operating floor and confirm the contamination status was completed. After analyzing the investigative results, the "contamination density distribution" throughout the entire operating floor was obtained, based on which the air dose rate inside the operating floor could be evaluated. A shielding design and measures to prevent radioactive material scattering will be examined.
- From April 8, 2019, work to move and contain the remaining objects on the operating floor (second round) started, the floor to suppress dust scattering and was completed on August 21.
- From September 10, 2019, work to move and contain the remaining objects on the operating floor (third round) started, third round mainly included moving the remaining large objects and placing them in the container.
- previous work will be transported to the solid waste storage facility from May.
- For fuel removal methods, based on the investigative results inside the operating floor from November 2018 to February 2019, a method to access from a small opening installed on the south side of the building was selected with aspects such as dust management and lower work exposure in mind (the method previously examined had involved fully dismantling the upper part of the building).
- including carrying-in of equipment. Following mockup training at the Fukushima Robot Test Field in mid-May 2020, the investigation will be conducted in mid-June.
- Main process to help fuel removal at Unit 3
- From July 4, 2019, fuel removal was resumed and up until July 21, 28 of all 566 fuel assemblies had been removed.
- The periodical inspection of the fuel-handling facility, which started on July 24, 2019, was completed on September 2, 2019. Some defective rotations of the tensile truss and mast were detected during the following adjustment work toward resumption of the fuel removal. In response, parts were replaced and the operation checked to confirm no problem.
- · During an operation check using simulant fuel, however, interference of cans inside the transportation cask and

Reactor Building and then removing rubble inside the cover, method (ii) was selected to ensure safer and more secure

installed over the SFP to prevent rubble falling on the pool and reduce risks. Before the actual installation, a mockup test of the work was conducted to confirm that there was no problem with the insertion of the rolled SFP cover bag and its extension. At present, the final check for the work, including training, is underway. After the check, the bag will be inserted on the SFP from the east side of the Reactor Building from around mid-June 2020. The bag will then be

On November 6, 2018, before investigating with a work plan to dismantle the Reactor Building rooftop and other tasks

such as materials and equipment which may hinder installation of the fuel-handling facility and other work. The second round mainly included moving the remaining small objects and placing them in the container. It also included cleaning

such as materials and equipment which may hinder the installation of the fuel-handling facility and other work. The

Training to practice work skills started from March 2020 and containers housing the remaining objects during the

Before fuel removal from the SFP, a remote-controlled investigation inside the SFP using an underwater ROV with a camera will be conducted to check the fuel top and any potential obstacles. At present, preparation is underway,

From April 15, 2019, work to remove 514 spent fuel assemblies and 52 non-irradiated fuel assemblies (566 assemblies in total) stored in the spent fuel pool started. Seven non-irradiated fuel assemblies were then loaded into the transportation cask and transported to the common pool on April 23. The first fuel removal was completed on April 25.

simulant fuel was identified on December 14, 2019. Though the following investigation confirmed slight leaning of the FHM mast, countermeasures, including a review of the procedures, were implemented.

- Fuel removal work was resumed from December 23, 2019 and has proceeded as planned.
- By February 14, 2020, a visual check of all fuel handles was completed. On March 25, a check of fuel soundness by a tool detected deformation of another fuel handle and a fuel rack hanging piece. There was no damage affecting the external environment (deformed handles were identified in a total of 15 fuel assemblies).
- From March 30, 2020, the fuel-handling machine is being inspected during the legal inspection of cranes. This fiscal year, in addition to the inspection items of the previous fiscal year, a series of operation checks assuming fuel removal are being conducted. With safer and earlier removal in mind, rubble was removed before the work. To prepare for continuous fuel removal, additional training for added workers will be provided after the inspection and fuel removal will be resumed from late May if possible.
- Progress status of dismantling work for the Unit 1/2 exhaust stack For the Unit 1/2 exhaust stack, dismantling to the scheduled 23rd block had been completed by April 29, 2020. As a measure to prevent rainwater infiltration from the top, a lid will be installed on the top.
- Work continues with safety first toward completing dismantling by early May 2020.

3. Retrieval of fuel debris

- Construction of an access route toward investigating the inside of the Unit 1 PCV
- Toward investigating the inside of the Unit 1 Primary Containment Vessel (PCV), an access route is being constructed. As pre-investigation before cutting obstacles inside the PCV, a camera was inserted from the completed hole to check the inside and confirm that no fallen objects which may affect future cutting work were present.
- After the pre-investigation, work to create the third hole (approx. 0.33 m in diameter) in the inner door started and was completed on April 22, 2020. As the following access route construction work, cutting of obstacles will start from around mid-May if possible.

4. Plans to store, process and dispose of solid waste and decommission of reactor facilities

Promoting efforts to reduce and store waste generated appropriately and R&D to facilitate adequate and safe storage, processing and disposal of radioactive waste

- Management status of the rubble and trimmed trees
 - As of the end of March 2020, the total storage volume of the concrete and metal rubble was approx. 292,000 m³ (+2,200 m³ compared to at the end of February with an area-occupation rate of 72%). The total storage volume of trimmed trees was approx. 134,300 m³ (+100 m³, with an area-occupation rate of 77%). The total storage volume of used protective clothing was approx. 46,400 m³ (-1,800 m³, with an area-occupation rate of 68%). The increase in rubble was mainly attributable to work related to rubble removal around the Unit 1-4 buildings, while the decrease in used protective clothing was attributable to the operation of the incinerator.
- \geq Management status of secondary waste from water treatment
- As of April 2, 2020, the total storage volume of waste sludge was 597 m³ (area-occupation rate: 85%), while that of concentrated waste fluid was 9.356 m³ (area-occupation rate: 91%). The total number of stored spent vessels, High-Integrity Containers (HICs) for multi-nuclide removal equipment and other vessels, was 4,718 (area-occupation rate: 74%).

5. Reactor cooling

The cold shutdown condition will be maintained by cooling the reactor by water injection and measures to complement the status monitoring will continue

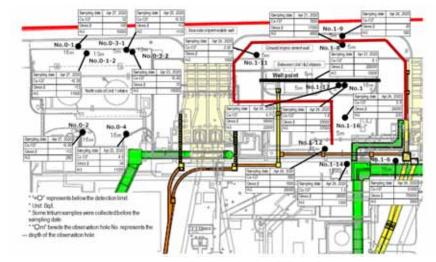
> Deviation from the limiting condition for operation at the nitrogen injection facility and determination of recovery

- On April 24, 2020, for the nitrogen injection facility into the reactor, the nitrogen flow rate did not decline when the nitrogen gas separator (B) was suspended for the regular separator switching operation. An investigation into the past operation confirmed that the power supply to the nitrogen density meter of the separator (B) was lost from April 21. This was regarded as deviation from the limiting condition for operation (LCO) because the requirement to "check the nitrogen density daily" as specified in the Implementation Plan Part 1 Article 25 (Function to maintain inert atmosphere inside the PCV) had not been satisfied.
- On the same day, the facility was re-switched. After confirming that the injected nitrogen density was 99% or more, it was determined the same day that the deviation from the LOC had been recovered.
- At present, the detailed cause of this event is being investigated and measures examined.

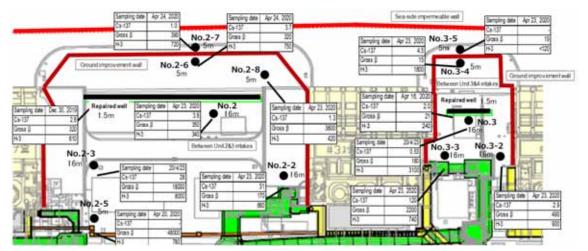
6. Reduction in radiation dose and mitigation of contamination

Effective dose-reduction at site boundaries and purification of port water to mitigate the impact of radiation on the external environment

- Status of groundwater and seawater on the east side of Turbine Building Units 1-4
- At No. 1-6, the concentration of gross β radioactive materials has been increasing from around 160,000 Bg/L since March 2020 and currently stands at around 750,000 Bg/L.
- At No. 1-9, the concentration of gross β radioactive materials has been repeatedly increasing and declining from around 20 Bg/L since April 2019 and currently stands at around 40 Bg/L.
- At No. 1-12, the concentration of gross β radioactive materials has been increasing from around 500 Bg/L since December 2019 and currently stands at around 1,800 Bg/L. Since August 15, 2013, pumping of groundwater continued (at the well point between the Unit 1 and 2 intakes: August 15, 2013 - October 13, 2015 and from October 24; at the repaired well: October 14-23, 2015).
- At No. 2-3, the H-3 concentration had been declining from around 6,000 Bg/L since August 2019, then increasing and currently stands at around 8,000 Bq/L. The concentration of gross β radioactive materials at the same point had been around 18,000 Bg/L.
- At No. 2-5, the H-3 concentration had been declining from around 2,300 Bg/L to less than 120 Bg/L since June 2019, then repeatedly increasing and declining and currently stands at around 800 Bq/L. The concentration of gross β radioactive materials at the same point had been declining from around 65,000 Bg/L to around 500 Bg/L since September 2019, then increasing and currently stands at around 48,000 Bg/L.
- At No. 2-6, the concentration of gross β radioactive materials had been increasing from around 100 Bg/L since May well point between the Unit 2 and 3 intakes: December 18, 2013 - October 13, 2015; at the repaired well: from October 14, 2015).
- The densities of radioactive materials in drainage channels have remained constant, despite increasing during rainfall
- In the open channel area of seawater intake for the units 1 to 4, concentration of radionuclides in seawater have fence was transferred to the center of the open channel due to mega float-related construction.
- connection of steel pipe sheet piles for the sea-side impermeable walls.
- In the area outside the port, regarding the densities of radioactive materials in seawater, those of Cs-137 and Sr-90 connected.


declining from around 14,000 Bg/L to around 5,000 Bg/L since August 2019, then increasing and currently stands at

2019 and currently stands at around 300 Bg/L. Since December 18, 2013, pumping of groundwater continued (at the


remained below the legal discharge limit, even while observing small increases in Cs-137 and Sr-90 during rainfall They have also been declining following the completed installation and the connection of steel pipe sheet piles for the sea-side impermeable walls. The concentration of Cs-137 has remained slightly higher in front of the south side impermeable walls and slightly lower on the north side of the east breakwater since March 20, 2019, when the silt

In the area of the port, concentration of radionuclides in seawater have remained below the legal discharge limit, even while observing small increases in Cs-137 and Sr-90 during rainfall. They have remained below the level of those in the Units 1-4 intake open channel area and been declining following the completed installation and

declined and remained low after steel pipe sheet piles for the sea-side impermeable walls were installed and

<Unit 1 intake north side, between Unit 1 and 2 intakes>

<Between Unit 2 and 3 intakes, between Unit 3 and 4 intakes> Figure 5: Groundwater concentration on the Turbine Building east side

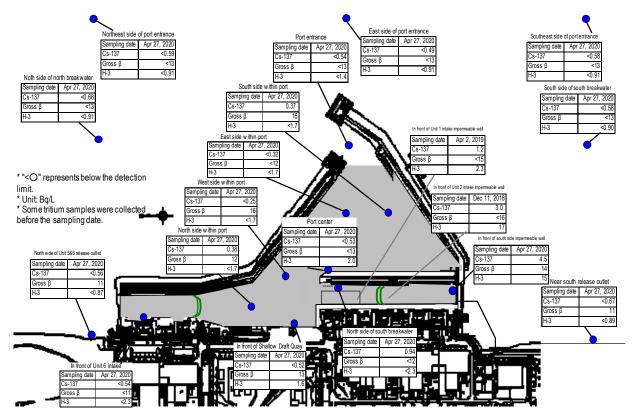
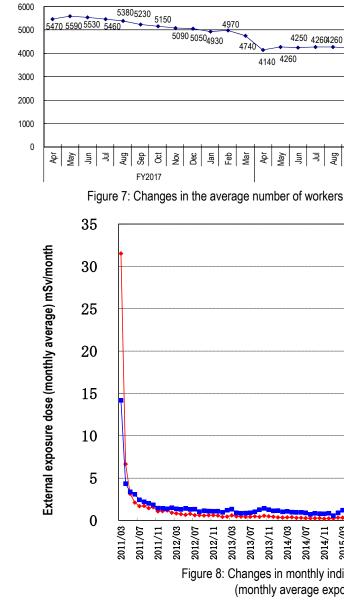



Figure 6: Seawater concentration around the port

7. Outlook of the number of staff required and efforts to improve the labor environment and conditions

Adequate number of staff will be secured in the long-term, while firmly implementing radiation control of workers. The work environment and labor conditions will be continuously improved by responding to the needs on the site.

- Staff management
- The monthly average total of personnel registered for at least one day per month to work on site during the past registered to work on site.
- It was confirmed with the prime contractors that the estimated manpower necessary for the work in May 2020 (approx. per day per month (actual values) were maintained, with approx. 3,400 to 5,600 since FY2017 (see Figure 7).
- The number of workers from within Fukushima Prefecture increased slightly while those from outside decreased slightly. 60%.
- The monthly average exposure dose of workers remained at approx. 0.22, 0.22, 0.24 and 0.21 mSv/month during FY2016, FY2017, FY2018 and FY2019, respectively. (Reference: Annual average exposure dose 20 mSv/year = 1.7 mSv/month)
- · For most workers, the exposure dose was sufficiently within the limit and allowed them to continue engaging in radiation work.

Workers per weekday

quarter from December 2019 to February 2020 was approx. 9,200 (TEPCO and partner company workers), which exceeded the monthly average number of actual workers (approx. 6,900). Accordingly, sufficient personnel are

3,900 per day: TEPCO and partner company workers) would be secured at present. The average numbers of workers

The local employment ratio (TEPCO and partner company workers) as of March 2020 also remained constant at around

	10 ₃₉₂₀
4160 4190 3440 4120	•
Sep Oct Jan Mar May Jul Nov Nov Sep Sep	Mar
FY2018 FY2019	
s per weekday for each month since FY2017 (actual values)	
→ TEPCO Partner Company	
February 2020	
Average: 0.43 mSv (provisional value)	
/03 //07 //11 //11 //07 //07 //07 //07 //03 //03 //11	
2015/03 2015/07 2015/01 2016/03 2016/07 2016/01 2016/03 2017/03 2018/03 2018/03 2018/03 2018/03 2019/03 2019/03 2019/01 2019/11	
lividual worker exposure dose	
osure dose since March 2011)	

- Measures to prevent infection and expansion of influenza and norovirus \geq
- Since November, measures for influenza and norovirus have been implemented, including free influenza vaccinations (subsidized by TEPCO HD) for partner company workers in the Fukushima Daiichi Nuclear Power Station (from November 13 to December 13, 2019) and at medical clinics around the site (from December 2, 2019 to January 30, 2020). As of January 30, 2020, a total of 6,107 workers had been vaccinated. In addition, a comprehensive range of other measures is also being implemented, including daily actions to prevent infection and expansion (measuring body temperature, health checks and monitoring infection status) and response after detecting possible infections (swift exit of possible patients and control of entry, mandatory wearing of masks in working spaces, etc.).

\geq Status of influenza and norovirus cases

Until the 17th week of 2020 (April 20-26, 2020), 170 influenza infections and ten norovirus infections were recorded. The totals for the same period for the previous season showed 311 cases of influenza and 15 norovirus infections.

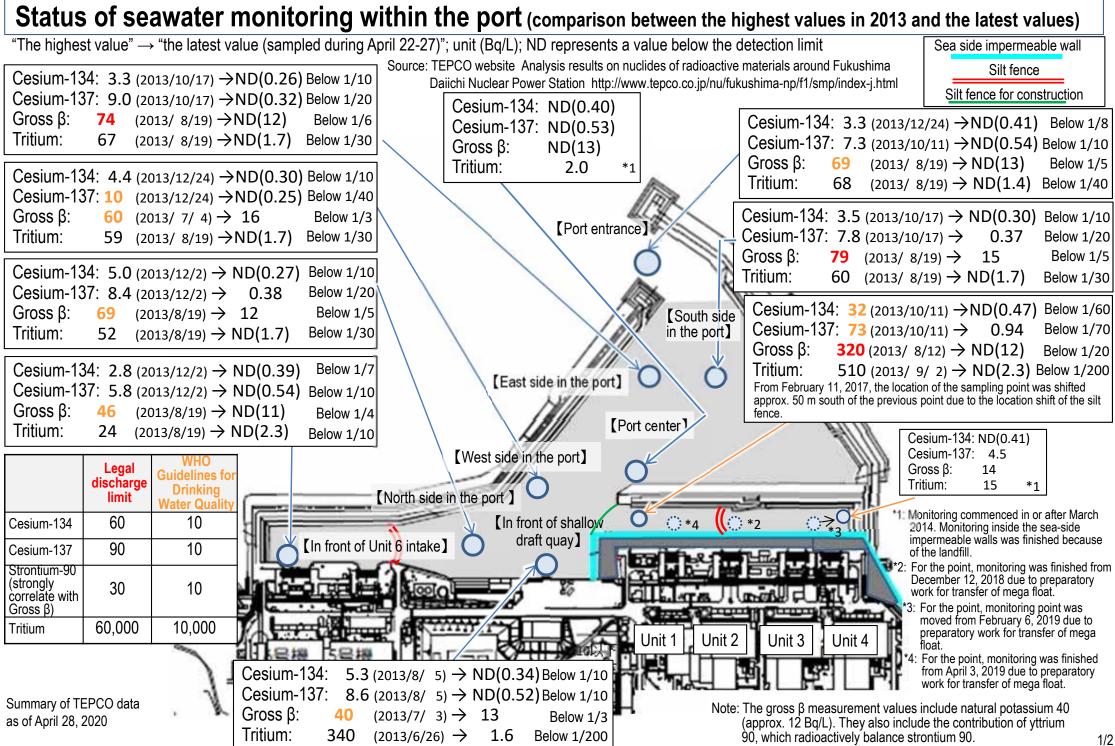
FY2019 accident occurrence status and FY2020 safety activity plan

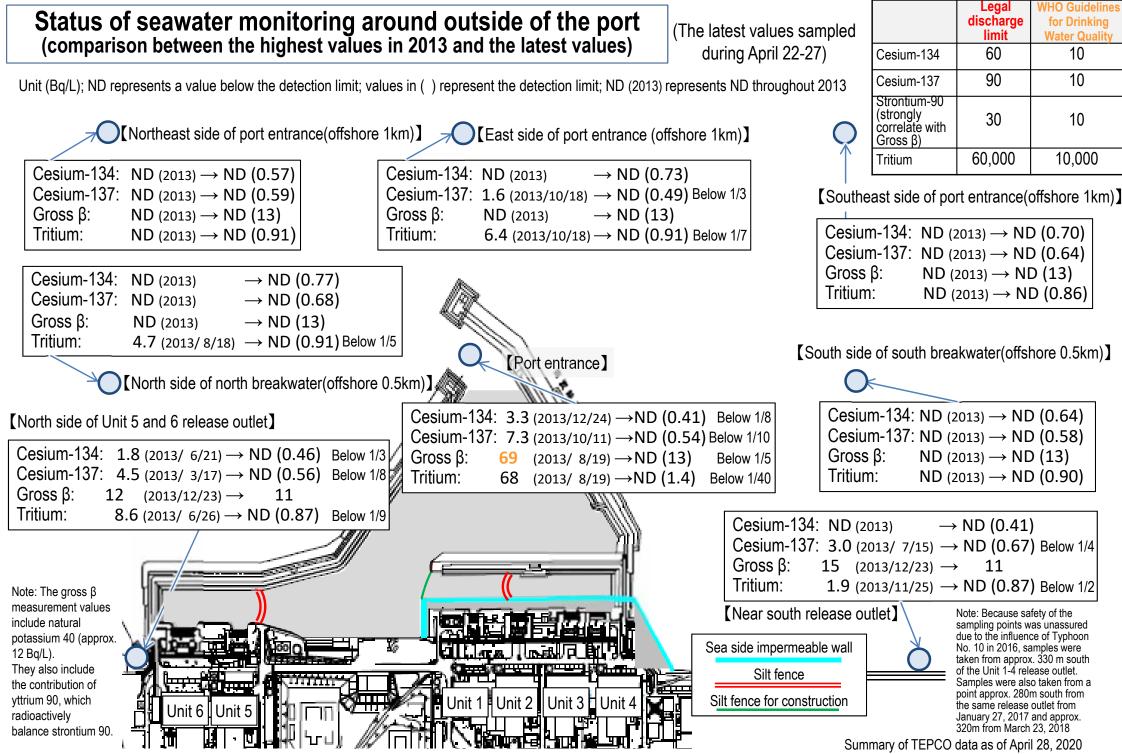
- The number of work accidents in FY2019 increased to 32 from 22 in the previous fiscal year. Issues such as an increased number of accidents and two involving serious injuries (incapacitating the persons concerned from work for 14 days or more) need to be analyzed and ongoing accident prevention measures must be reviewed and improved.
- The number of heat stroke cases in FY2019 increased to 14 from eight in the previous fiscal year. FY2019 had a hot summer as in the previous year, with cases involving insufficient heat adaptation (caused by soaring temperatures after the end of the rainy season and significant temperature differences from the previous day). Furthermore, as characteristics in FY2019, many cases involved workers in their 40s and 50s, wearing full-face masks and working for more than 90 minutes. This fiscal year, safety will be managed based on these characteristics.
- In FY2020, safety activities will be implemented focused on "raising and infiltrating safety awareness," "improving safety management skills" and "improving management such as activation of TBM-KY." In addition, measures to prevent heat stroke cases during work with full-face masks after the end of rainy season will also be enhanced to eliminate accidents causing injury or death.
- Covid-19 countermeasures at the Fukushima Daiichi Nuclear Power Station \geq
- At the Fukushima Daiichi Nuclear Power Station, countermeasures have been implemented to prevent the infection spread of Covid-19, such as requiring employees to take their temperature prior to coming to the office and to wear masks at all times, etc. In light of the fact that no TEPCO HD employees or cooperative firm laborers at the Fukushima Daiichi NPS have contracted Covid-19 (as of April 27), at current time fieldwork will continue as usual.
- In order to prevent the infection spread of Covid-19, efforts shall further be enhanced to avoid the "Three Cs" (Closed spaces, Crowded places, Close-contact settings). Moreover, the following additional countermeasures are implemented from April 29 through May 10, which has been deemed an "enhanced countermeasures period," in order to reduce the risk of infection: all personnel have been requested to avoid leaving their homes for unnecessary reasons, including travel outside of Fukushima Prefecture, during the enhanced countermeasures period. Efforts will continue to prevent occurrence and increase of infection cases.
- Health management of workers in the Fukushima Daiichi NPS
- As health management measures in line with the guidelines of the Ministry of Health, Labour and Welfare (issued in August 2015), a scheme was established and operated, whereby prime contractors confirmed reexamination at medical institutions and the subsequent status of workers who were diagnosed as requiring "detailed examination and treatment" in the health checkup, with TEPCO confirming the operation status by the prime contractors.
- The recent report on the management status of the health checkup during the third quarter (October December) in FY2019 confirmed that the prime contractors had provided appropriate guidance and managed operation properly under the scheme. The report on the follow-up status during the second guarter in FY2019 and before confirmed that responses to workers, which had not been completed by the time of the previous report, were being provided on an ongoing basis and checking of operations will continue.

8. Others

- Formulation of the long-term maintenance and management plan for facilities within the Fukushima Daiichi NPS
- · For facilities being used in the countermeasures for decommissioning and contaminated-water management and measures implemented based on the same.
- All facilities and equipment (approx. 340,000 items) and buildings and structures (approx. 580 items) within the site first quarter of FY2020.
- The progress status of the long-term maintenance and management plan and the validation of the rating will be checked appropriately and measures reviewed, as necessary.
- Future plan of the self-driving EV bus
- To further improve the transportation efficiency and convenience on site, a self-driving EV bus "ARMA" was in practical service in the Hamadori area.
- Having achieved the milestone of driving with an operator, the operation of "ARMA" was terminated at the end of tested in the next step. To further develop the self-driving technology, a new partner is being selected.
- \triangleright "Sessions for hearing opinions" held concerning handling ALPS-treated water
- Based on the report from the "Subcommittee on Handling of the ALPS-Treated Water" published on February 10, 2020, the government held a meeting as an opportunity to receive opinions from a wide variety of concerned parties, April 6 and 13 and is opening a call for public comments in written documents during the period April 6 – May 15.

those having been installed before the earthquake but not used, risks which should be particularly focused on for decommissioning were determined in view of the post-earthquake environmental change. For the facilities (equipment) concerned, a long-term maintenance and management plan will be formulated according to its aging mode and

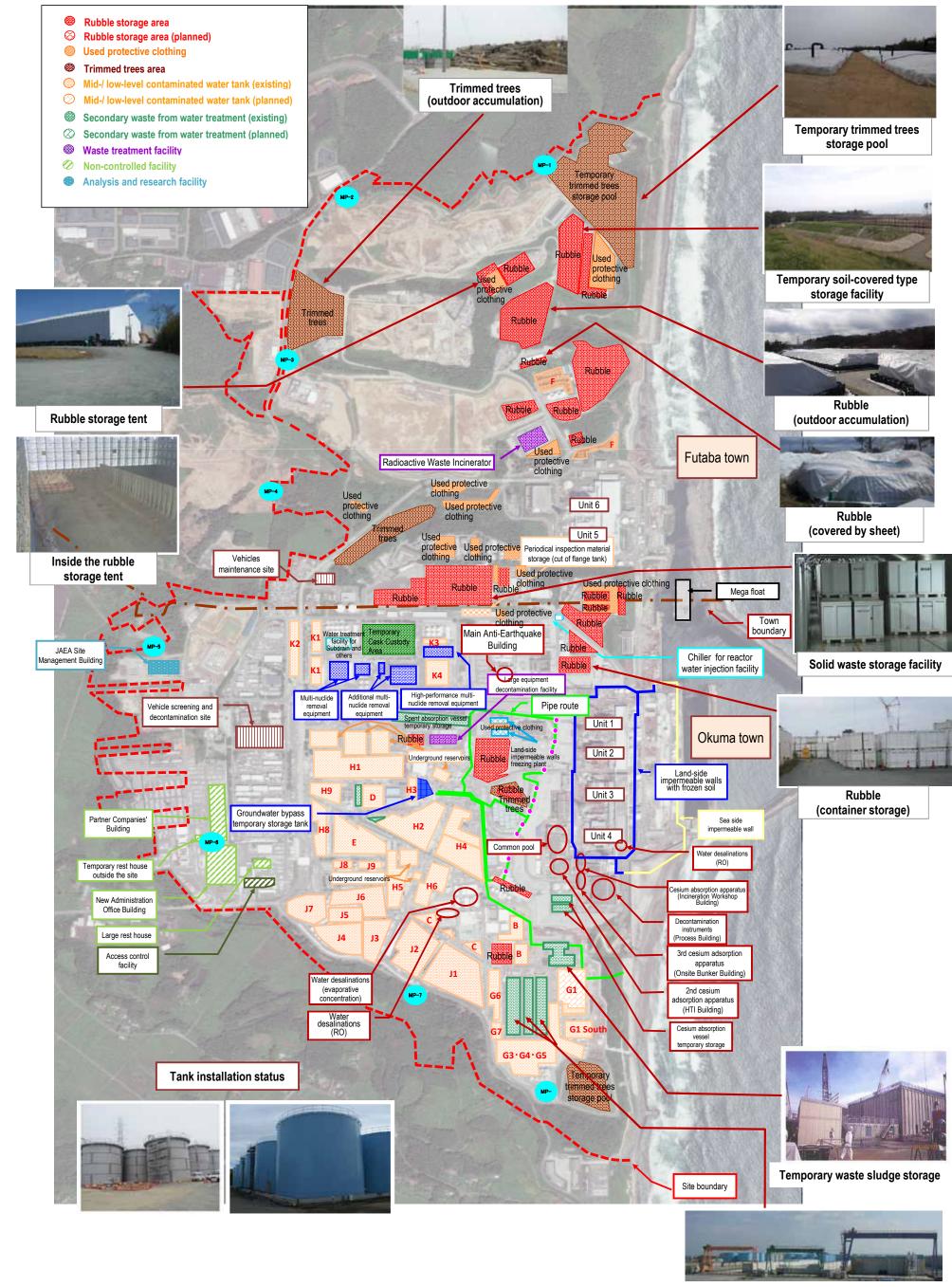

were listed and rated according to their respective priority. Emergency measures for those rated as Priority 1 were completed in March 2020. After examining the measures and implementation schedule taking the degradation status of each piece of equipment into account, the long-term maintenance and management plan will be formulated by the


operation for two years from April 2018 with future unmanned driving in mind and to contribute to public transportation

March 2020. Based on the issues identified and knowledge gained during this operation, unmanned operation will be

including representatives of local municipalities and associations in the fields of agriculture, forestry and fisheries, on

Appendix 1



Source: TEPCO website, Analysis results on nuclides of radioactive materials around Fukushima Daiichi Nuclear Power Station, http://www.tepco.co.jp/nu/fukushima-np/f1/smp/index-j.html

TEPCO Holdings Fukushima Daiichi Nuclear Power Station Site Layout

Appendix 2

April 30, 2020

Spent adsorption vessel temporary storage facility

	Provided by Japan Space Imaging, photo taken on June 14, 2018 Product(C) [2018] DigitalGlobe, Inc.		
100m	500m		

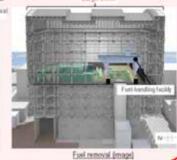
③Tokya Electric Power Company Holdings, Inc. All Rights Reserved. 無断複製・転載禁止 東京電力ホールディングス株式会社

Reference

Progress toward decommissioning: Fuel removal from the spent fuel pool (SFP)

April 30, 2020 Secretariat of the Team for Countermeasures for Decommissioning and Contaminated Water Treatment 1/6

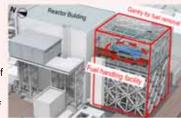
Immediate target


Commence fuel removal from the Unit 1-3 Spent Fuel Pools

Unit 1

Toward fuel removal from the Unit 1 spent fuel pool, investigations have been implemented to ascertain the conditions of the fallen roof on the south side and the contamination of the well plug. Based on the results of these investigations, "the method to initially install a large cover over the Reactor Building and then remove rubble inside the cover" was selected to ensure a safer and more secure removal. Details of the selected method will be designed and the process of fuel removal will be refined.

<Reference> Progress to date Rubble removal on the north side of the operating floor started from January 2018 and has been implemented sequentially. In July and August 2019, the well plug, which was misaligned from its normal position, was investigated and in August and September, the conditions of the overhead crane were checked. Based on the results of these investigations, as the removal requires more careful work taking dust scattering into consideration, two methods were examined: installing a cover after rubble removal and initially installing a large cover over the Reactor Building and then removing rubble nside the cover.

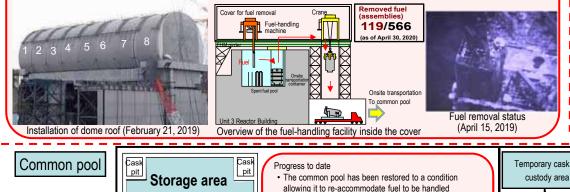


Unit 2

Toward fuel removal from the Unit 2 spent fuel pool, based on findings from internal operating floor investigations from November 2018 to February 2019, instead of fully dismantling the upper part of the building, the decision was made to install a small opening on the south side and use a boom crane. The changed method will be established and the fuel removal process refined.

<Reference> Progress to date Previously, potential to recover the existing

overhead crane and the fuel handling machine was examined. However, the high radiation dose inside the operating floor meant the decision was taken to dismantle the upper part of the building in November 2015. Findings from internal investigations of the operating floor from November 2018 to February 2019 underlined the potential to conduct limited work there and the means of accessing from the south side had been examined



Overview of fuel removal (bird's-eve view)

Unit 3

Prior to the installation of a cover for fuel removal, removal of large rubble from the spent fuel pool was completed in November 2015. To ensure safe and steady fuel removal, training of remote control was conducted at the factory using the actual fuel-handling machine which will be installed on site (February - December 2015). Measures to reduce dose on the Reactor Building top floor (decontamination, shields) were completed in December 2016. Installation of a cover for fuel removal and a fuel-handling machine is underway from January 2017. Installation of the fuel removal cover was completed on February 23, 2018.

Toward fuel removal, the rubble retrieval training inside the pool, which was scheduled in conjunction with fuel removal training, started from March 15, 2019, and started fuel removal from April 15, 2019.

An open space will be maintained in

the common pool (Transfer to the

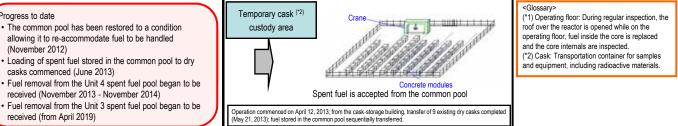
temporary cask custody area)

(November 2012)

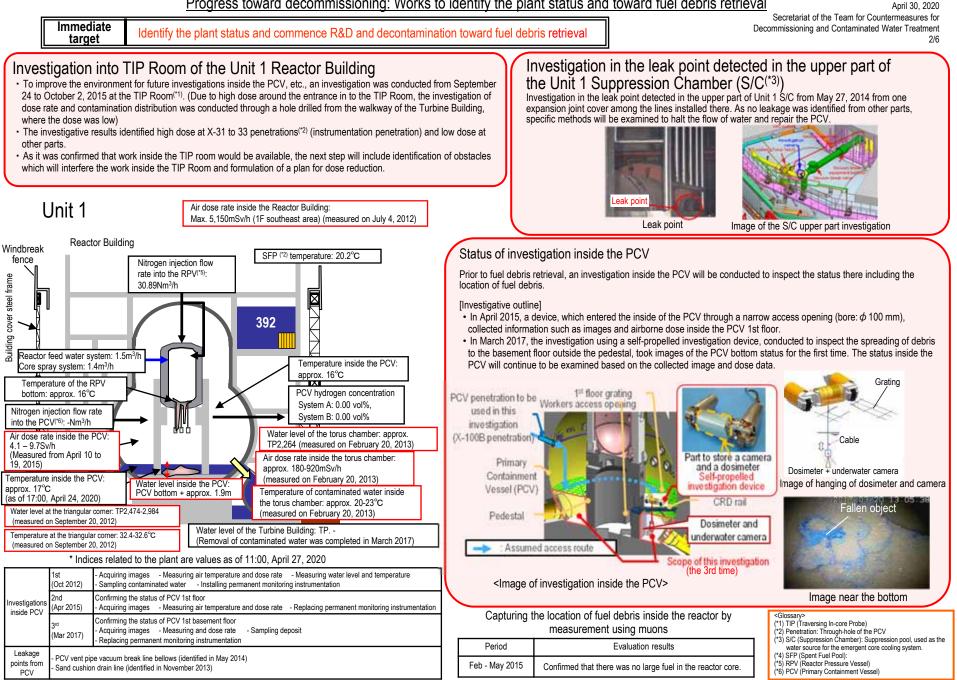
received (from April 2019)

Unit 4

In the Mid- and Long-Term Roadmap, the target of Phase 1 involved commencing fuel removal from inside the spent fuel pool (SFP) of the 1st Unit within two years of completion of Step 2 (by December 2013). On November 18, 2013, fuel removal from Unit 4, or the 1st Unit, commenced and Phase 2 of the roadmap started

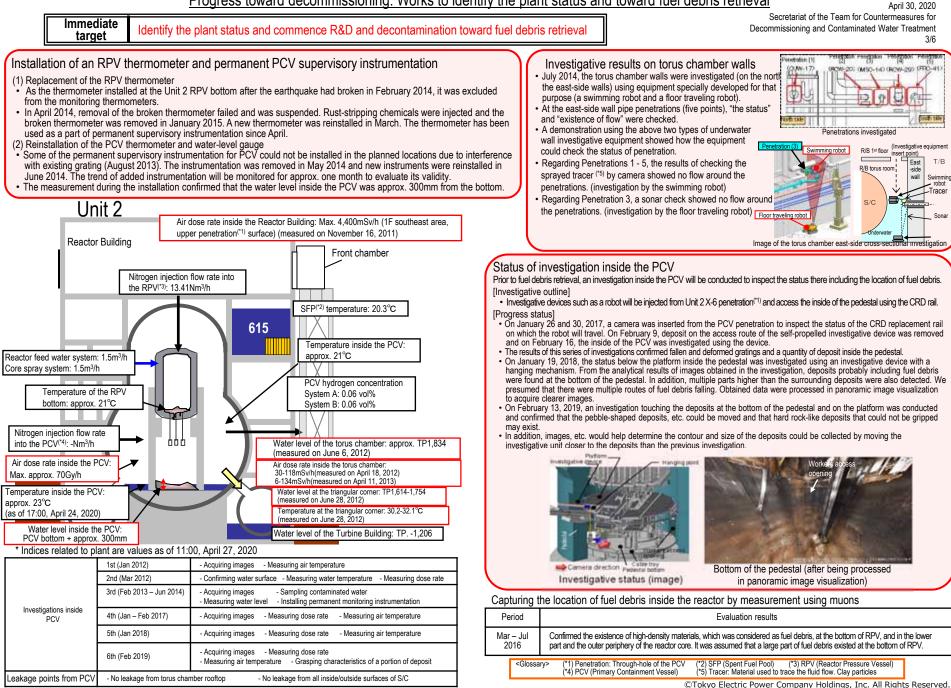

On November 5, 2014, within a year of commencing work to fuel removal, all 1.331 spent fuel assemblies in the pool had been transferred. The transfer of the

Fuel removal status

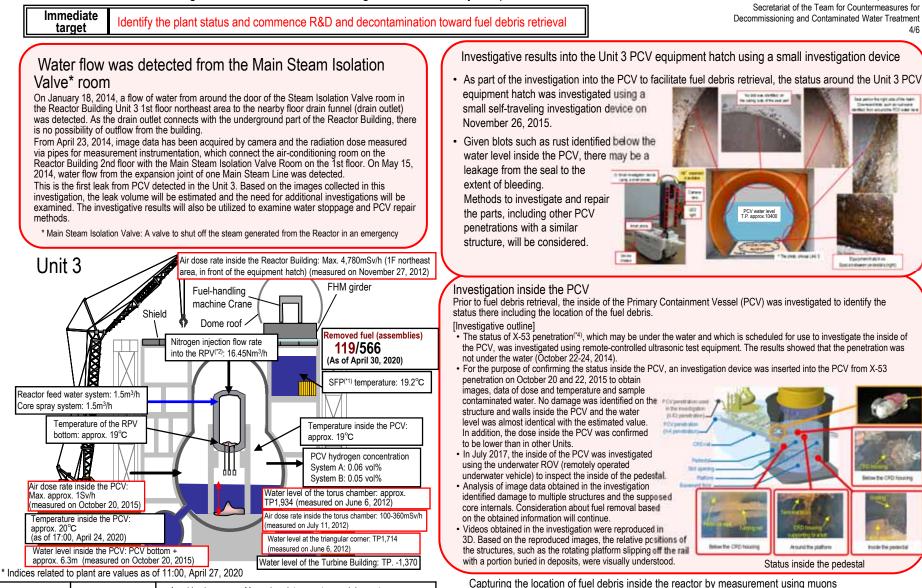

remaining non-irradiated fuel assemblies to the Unit 6 SFP was completed on December 22. 2014. (2 of the non-irradiated fuel assemblies were removed in advance in July 2012 for fuel checks)

This marks the completion of fuel removal from the Unit 4 Reactor Building. Based on this experience, fuel assemblies will be removed from Unit 1-3 pools.

> * A part of the photo is corrected because it includes sensitive information related to physical protection.



©Tokyo Electric Power Company Holdings, Inc. All Rights Reserved.



©Tokyo Electric Power Company Holdings, Inc. All Rights Reserved.

Progress toward decommissioning: Works to identify the plant status and toward fuel debris retrieval

Progress toward decommissioning: Works to identify the plant status and toward fuel debris retrieval

Period

May - Sep 2017

(*1) SFP (Spent Fuel Pool) (*2) RPV (Reactor Pressure Vessel)

<Glossarv>

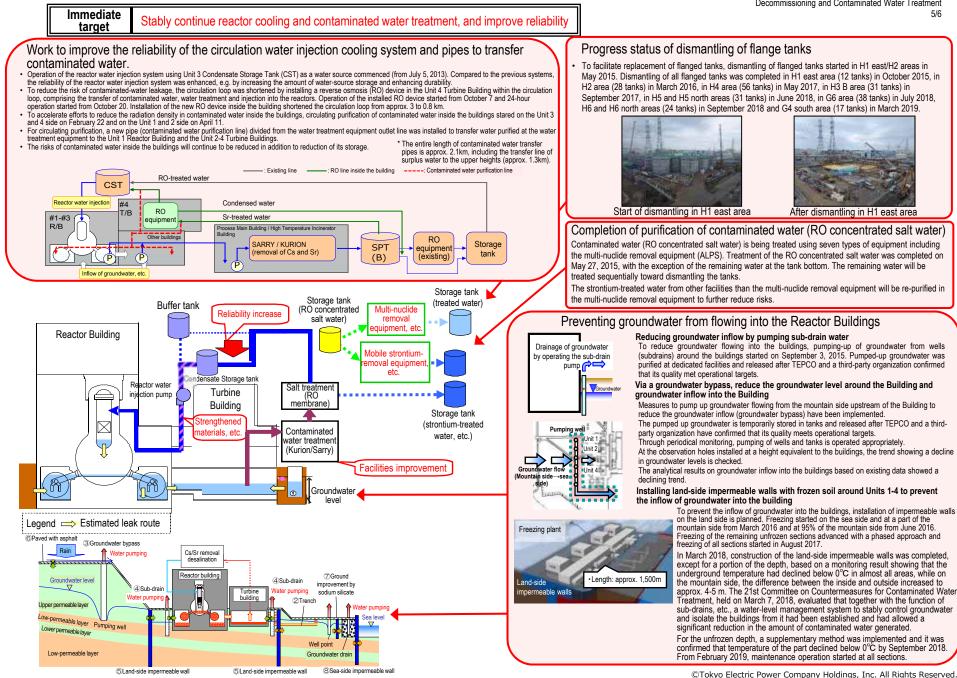
Investigations inside PCV	1st (Oct – Dec 2015)	- Acquiring images - Measuring air temperature and dose rate - Measuring water level and temperature - Sampling contaminated water - Installing permanent monitoring instrumentation (December 2015)	
	2nd (Jul 2017)	- Acquiring images - Installing permanent monitoring instrumentation (August 2017)	
Leakage points from PCV	- Main steam pipe bellows (identified in May 2014)		

Evaluation results

The evaluation confirmed that no large lump existed in the core area where fuel had been placed

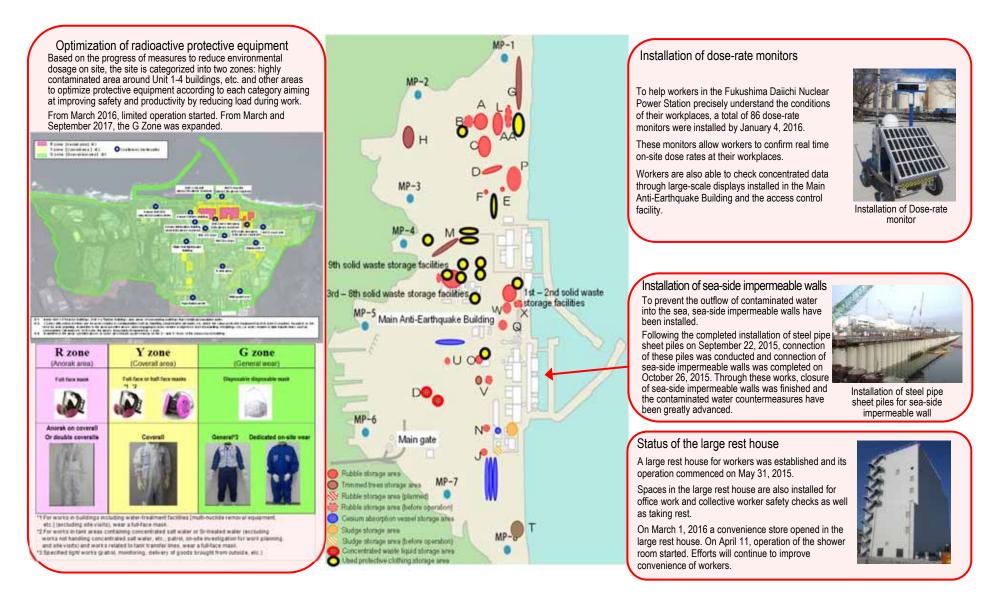
and that part of the fuel debris potentially existed at the bottom of the RPV.

4/6


April 30 2020

Belline The CRD House In

Inside the portential


Progress toward decommissioning: Work related to circulation cooling and contaminated water treatment line

April 30, 2020 Secretariat of the Team for Countermeasures for Decommissioning and Contaminated Water Treatment 5/6

Progress toward decommissioning: Work to improve the environment within the site

Immediate targets
Reduce the effect of additional release from the entire power station and radiation from radioactive waste (secondary water treatment waste, rubble, etc.) generated after the accident, to limit the effective radiation dose to below 1mSv/year at the site boundaries.
Prevent contamination expansion in sea, decontamination within the site

Secretariat of the Team for Countermeasures for Decommissioning and Contaminated Water Treatment

6/6

April 30, 2020